Gabaergic
GABAergic interneurons
Alberto Bacci
The successful candidate will work on inhibitory circuits of the prefrontal cortex of mice. In particular, they will study the properties and plasticity of synapses connecting a rich diversity of prefrontal cortical neuron subtypes. The candidate will also perform and analyze electrophysiological recordings in vivo, using high-density Neuropixels probes. This project is part of an ERA-Net NEURON international consortium and focuses on the rich diversity of GABAergic interneurons and their impact on the functional states of prefrontal cortical networks in healthy and diseased states.
Metabolic-functional coupling of parvalbmunin-positive GABAergic interneurons in the injured and epileptic brain
Parvalbumin-positive GABAergic interneurons (PV-INs) provide inhibitory control of excitatory neuron activity, coordinate circuit function, and regulate behavior and cognition. PV-INs are uniquely susceptible to loss and dysfunction in traumatic brain injury (TBI) and epilepsy but the cause of this susceptibility is unknown. One hypothesis is that PV-INs use specialized metabolic systems to support their high-frequency action potential firing and that metabolic stress disrupts these systems, leading to their dysfunction and loss. Metabolism-based therapies can restore PV-IN function after injury in preclinical TBI models. Based on these findings, we hypothesize that (1) PV-INs are highly metabolically specialized, (2) these specializations are lost after TBI, and (3) restoring PV-IN metabolic specializations can improve PV-IN function as well as TBI-related outcomes. Using novel single-cell approaches, we can now quantify cell-type-specific metabolism in complex tissues to determine whether PV-IN metabolic dysfunction contributes to the pathophysiology of TBI.
Chandelier cells shine a light on the emergence of GABAergic circuits in the cortex
GABAergic interneurons are chiefly responsible for controlling the activity of local circuits in the cortex. Chandelier cells (ChCs) are a type of GABAergic interneuron that control the output of hundreds of neighbouring pyramidal cells through axo-axonic synapses which target the axon initial segment (AIS). Despite their importance in modulating circuit activity, our knowledge of the development and function of axo-axonic synapses remains elusive. We have investigated the emergence and plasticity of axo-axonic synapses in layer 2/3 of the somatosensory cortex (S1) and found that ChCs follow what appear to be homeostatic rules when forming synapses with pyramidal neurons. We are currently implementing in vivo techniques to image the process of axo-axonic synapse formation during development and uncover the dynamics of synaptogenesis and pruning at the AIS. In addition, we are using an all-optical approach to both activate and measure the activity of chandelier cells and their postsynaptic partners in the primary visual cortex (V1) and somatosensory cortex (S1) in mice, also during development. We aim to provide a structural and functional description of the emergence and plasticity of a GABAergic synapse type in the cortex.
Diversification of cortical inhibitory circuits & Molecular programs orchestrating the wiring of inhibitory circuitries
GABAergic interneurons play crucial roles in the regulation of neural activity in the cerebral cortex. In this Dual Lecture, Prof Oscar Marín and Prof Beatriz Rico will discuss several aspects of the formation of inhibitory circuits in the mammalian cerebral cortex. Prof. Marín will provide an overview of the mechanisms regulating the generation of the remarkable diversity of GABAergic interneurons and their ultimate numbers. Prof. Rico will describe the molecular logic through which specific pyramidal cell-interneuron circuits are established in the cerebral cortex, and how alterations in some of these connectivity motifs might be liked to disease. Our web pages for reference: https://devneuro.org.uk/marinlab/ & https://devneuro.org.uk/rico/default
The GluN2A Subunit of the NMDA Receptor and Parvalbumin Interneurons: A Possible Role in Interneuron Development
N-methyl-D-aspartate receptors (NMDARs) are excitatory glutamate-gated ion channels that are expressed throughout the central nervous system. NMDARs mediate calcium entry into cells, and are involved in a host of neurological functions. The GluN2A subunit, encoded by the GRIN2A gene, is expressed by both excitatory and inhibitory neurons, with well described roles in pyramidal cells. By using Grin2a knockout mice, we show that the loss of GluN2A signaling impacts parvalbumin-positive (PV) GABAergic interneuron function in hippocampus. Grin2a knockout mice have 33% more PV cells in CA1 compared to wild type but similar cholecystokinin-positive cell density. Immunohistochemistry and electrophysiological recordings show that excess PV cells do eventually incorporate into the hippocampal network and participate in phasic inhibition. Although the morphology of Grin2a knockout PV cells is unaffected, excitability and action-potential firing properties show age-dependent alterations. Preadolescent (P20-25) PV cells have an increased input resistance, longer membrane time constant, longer action-potential half-width, a lower current threshold for depolarization-induced block of action-potential firing, and a decrease in peak action-potential firing rate. Each of these measures are corrected in adulthood, reaching wild type levels, suggesting a potential delay of electrophysiological maturation. The circuit and behavioral implications of this age-dependent PV interneuron malfunction are unknown. However, neonatal Grin2a knockout mice are more susceptible to lipopolysaccharide and febrile-induced seizures, consistent with a critical role for early GluN2A signaling in development and maintenance of excitatory-inhibitory balance. These results could provide insights into how loss-of-function GRIN2A human variants generate an epileptic phenotypes.
Dual lecture: Diversification of cortical inhibitory circuits & Molecular programs orchestrating the wiring of inhibitory circuitries
GABAergic interneurons play crucial roles in the regulation of neural activity in the cerebral cortex. In this Dual Lecture, Prof Oscar Marín and Prof Beatriz Rico will discuss several aspects of the formation of inhibitory circuits in the mammalian cerebral cortex. Prof. Marín will provide an overview of the mechanisms regulating the generation of the remarkable diversity of GABAergic interneurons and their ultimate numbers. Prof. Rico will describe the molecular logic through which specific pyramidal cell-interneuron circuits are established in the cerebral cortex, and how alterations in some of these connectivity motifs might be liked to disease.
Mechanisms of CACNA1A-associated developmental epileptic encephalopathies
Developmental epileptic encephalopathies are early-onset epilepsies, often refractory to therapy, with developmental delay or regression. These disorders carry poor neurodevelopmental prognosis, with long-term refractory epilepsy and persistent cognitive, behavioral and motor deficits. Mutations in the CACNA1A gene, encoding the pore-forming α1 subunit of CaV2.1 voltage-gated calcium channels, result in a spectrum of neurological disorders, including severe, early-onset epileptic encephalopathies. Recent work from the Rossignol lab helped characterize the phenotypic spectrum of CACNA1A-related epilepsies in humans. Using conditional genetics and novel animal models, the Rossignol lab unveiled some of the underlying pathophysiological mechanisms, including critical deficits in cortical inhibition, resulting in seizures and a range of cognitive-behavioral deficits. Importantly, Dr. Rossignol’s team demonstrated that the targeted activation of specific GABAergic interneuron populations in selected cortical regions prevents motor seizures and reverts attention deficits and cognitive rigidity in mouse models of the disorder. These recent findings open novel avenues for the treatment of these severe CACNA1A-associated neurodevelopmental disorders.
Integration of „environmental“ information in the neuronal epigenome
The inhibitory actions of the heterogeneous collection of GABAergic interneurons tremendously influence cortical information processing, which is reflected by diseases like autism, epilepsy and schizophrenia that involve defects in cortical inhibition. Apart from the regulation of physiological processes like synaptic transmission, proper interneuron function also relies on their correct development. Hence, decrypting regulatory networks that direct proper cortical interneuron development as well as adult functionality is of great interest, as this helps to identify critical events implicated in the etiology of the aforementioned diseases. Thereby, extrinsic factors modulate these processes and act on cell- and stage-specific transcriptional programs. Herein, epigenetic mechanisms of gene regulation, like DNA methylation executed by DNA methyltransferases (DNMTs), histone modifications and non-coding RNAs, call increasing attention in integrating “environmental information” in our genome and sculpting physiological processes in the brain relevant for human mental health. Several studies associate altered expression levels and function of the DNA methyltransferase 1 (DNMT1) in subsets of embryonic and adult cortical interneurons in patients diagnosed with schizophrenia. Although accumulating evidence supports the relevance of epigenetic signatures for instructing cell type-specific development, only very little is known about their functional implications in discrete developmental processes and in subtype-specific maturation of cortical interneurons. Similarly, little is known about the role of DNMT1 in regulating adult interneurons functionality. This talk will provide an overview about newly identified and roles DNMT1 has in orchestrating cortical interneuron development and adult function. Further, this talk will report about the implications of lncRNAs in mediating site-specific DNA methylation in response to discrete external stimuli.
Towards targeted therapies for the treatment of Dravet Syndrome
Dravet syndrome is a severe epileptic encephalopathy that begins during the first year of life and leads to severe cognitive and social interaction deficits. It is mostly caused by heterozygous loss-of-function mutations in the SCN1A gene, which encodes for the alpha-subunit of the voltage-gated sodium channel (Nav1.1) and is responsible mainly of GABAergic interneuron excitability. While different therapies based on the upregulation of the healthy allele of the gene are being developed, the dynamics of reversibility of the pathology are still unclear. In fact, whether and to which extent the pathology is reversible after symptom onset and if it is sufficient to ensure physiological levels of Scn1a during a specific critical period of time are open questions in the field and their answers are required for proper development of effective therapies. We generated a novel Scn1a conditional knock-in mouse model (Scn1aSTOP) in which the endogenous Scn1a gene is silenced by the insertion of a floxed STOP cassette in an intron of Scn1a gene; upon Cre recombinase expression, the STOP cassette is removed, and the mutant allele can be reconstituted as a functional Scn1a allele. In this model we can reactivate the expression of Scn1a exactly in the neuronal subtypes in which it is expressed and at its physiological level. Those aspects are crucial to obtain a final answer on the reversibility of DS after symptom onset. We exploited this model to demonstrate that global brain re-expression of the Scn1a gene when symptoms are already developed (P30) led to a complete rescue of both spontaneous and thermic inducible seizures and amelioration of behavioral abnormalities characteristic of this model. We also highlighted dramatic gene expression alterations associated with astrogliosis and inflammation that, accordingly, were rescued by Scn1a gene expression normalization at P30. Moreover, employing a conditional knock-out mouse model of DS we reported that ensuring physiological levels of Scn1a during the critical period of symptom appearance (until P30) is not sufficient to prevent the DS, conversely, mice start to die of SUDEP and develop spontaneous seizures. These results offer promising insights in the reversibility of DS and can help to accelerate therapeutic translation, providing important information on the timing for gene therapy delivery to Dravet patients.
Organization and control of hippocampal circuits in epilepsy
Basket cells are key GABAergic inhibitory interneurons that target the somata and proximal dendrites, enabling efficient control of the timing and rate of spiking of their postsynaptic targets. In all cortical circuits, there are two major types of basket cell that exhibit striking developmental, molecular, anatomical, and physiological differences. In this talk, I will discuss recent results that reveal the tightly coupled complementarity of these two key microcircuit regulatory modules, demonstrating a novel form of brain-state-specific segregation of inhibition during spontaneous behavior, with implications for the assessment of dysregulated inhibition in epilepsy. In addition, I will describe recent advances in our understanding of the spatio-temporal dynamics of endocannabinoid signaling in hippocampal circuits and discuss how abnormal amplification of these activity-dependent signaling processes leads to surprising downstream effects in seizures.
Cellular/circuit dysfunction across development in a model of Dravet syndrome
Dravet syndrome (DS) is a neurodevelopmental disorder caused by heterozygous loss-of-function of the gene SCN1A encoding the voltage-gated sodium channel subunit Nav1.1, and is defined by treatment-resistant epilepsy, intellectual impairment, and sudden death. However, disease mechanisms remain unclear, as previously-identified deficiency in action potential generation of Nav1.1-expressing parvalbumin-positive fast-spiking GABAergic interneurons (PV-INs) in DS (Scn1a+/-) mice normalizes during development. We used a novel approach that facilitated the assessment of PV-IN function at both early (post-natal day (P) 16-21) and late (P35-56) time points in the same mice. We confirmed that PV-IN spike generation was impaired at P16-21 in all mice (those deceased from SUDEP by P35 and those surviving to P35-56). However, unitary synaptic transmission assessed in PV-IN:principal cell paired recordings was severely dysfunctional selectively in mice recorded at P16-21 that did not survive to P35. Spike generation in surviving mice had normalized by P35-56; yet we again identified abnormalities in synaptic transmission in surviving mice. We propose that early dysfunction of PV-IN spike propagation drives epilepsy severity and risk of sudden death, while persistent dysfunction of spike propagation contributes to chronic DS pathology.
Cellular/circuit dysfunction in a model of Dravet syndrome - a severe childhood epilepsy
Dravet syndrome is a severe childhood epilepsy due to heterozygous loss-of-function mutation of the gene SCN1A, which encodes the type 1 neuronal voltage gated sodium (Na+) channel alpha-subunit Nav1.1. Prior studies in mouse models of Dravet syndrome (Scn1a+/- mice) at early developmental time points indicate that, in cerebral cortex, Nav1.1 is predominantly expressed in GABAergic interneurons (INs) and, in particular, in parvalbumin-positive fast-spiking basket cells (PV-INs). This has led to a model of Dravet syndrome pathogenesis whereby Nav1.1 mutation leads to preferential IN dysfunction, decreased synaptic inhibition, hyperexcitability, and epilepsy. We found that, at later developmental time points, the intrinsic excitability of PV-INs has essentially normalized, via compensatory reorganization of axonal Na+ channels. Instead, we found persistent and seemingly paradoxical dysfunction of putative disinhibitory INs expressing vasoactive intestinal peptide (VIP-INs). In vivo two-photon calcium imaging in neocortex during temperature-induced seizures in Scn1a+/- mice showed that mean activity of both putative principal cells and PV-INs was higher in Scn1a+/- relative to wild-type controls during quiet wakefulness at baseline and at elevated core body temperature. However, wild-type PV-INs showed a progressive synchronization in response to temperature elevation that was absent in PV-INs from Scn1a+/- mice immediately prior to seizure onset. We suggest that impaired PV-IN synchronization, perhaps via persistent axonal dysfunction, may contribute to the transition to the ictal state during temperature induced seizures in Dravet syndrome.
Arc/Arg3.1 expression in GABAergic interneurons and its impact on anxiety- and depression-like behaviors in mice
FENS Forum 2024
Contrasting the role of excitatory pyramidal cells and GABAergic interneurons in prefrontal cortex through a novel contextual auditory stimulus task paradigm and calcium imaging
FENS Forum 2024
Shaping neocortical networks via maturation of synaptic functions in VIP-positive GABAergic interneurons
FENS Forum 2024