← Back

Gap Junctions

Topic spotlight
TopicWorld Wide

gap junctions

Discover seminars, jobs, and research tagged with gap junctions across World Wide.
9 curated items7 Seminars1 Position1 ePoster
Updated 1 day ago
9 items · gap junctions
9 results
Position

Prof. Espen Hartveit

University of Bergen, Department of Biomedicine
Bergen, Norway
Dec 5, 2025

In the Hartveit-Veruki group (Retinal Microcircuits) at the Department of Biomedicine, Faculty of Medicine, a full-time (100 %) position as Postdoctoral Research Fellow is available for a period of three (3) years. The position is linked to the consortium project ”Understanding plasticity and neural circuit dynamics in the brain” (TMS Brain Research Initiative), financed by the "Trond Mohn Stiftelse" (TMS), the University of Bergen, and the Norwegian University of Science and Technology (NTNU). Expected starting date is negotiable, but preferably by end of 2023 / beginning of 2024. The main objective of the TMS Brain Research Initiative is to identify core principles of plasticity and neural circuit dynamics in the brain. The project is hosted by the University of Bergen (UiB) at the Mohn Research Centre for the Brain and organized as a consortium collaboration between the Department of Biomedicine at UiB and the Kavli Institute for Systems Neuroscience at the Norwegian University of Science and Technology (NTNU). Through the centre's activities, the Postdoc will interact with a multidisciplinary team covering broad areas of neuroscience and gain experience in scientific presentation and discussion. The project focuses on investigating plasticity of neuronal microcircuits involving amacrine cells in the mammalian retina, including functions of ion channels and chemical and electrical synapses. Primary methods include patch-clamp electrophysiology, two-photon microscopy, and two-photon FLIM-FRET of intracellular signaling. The experimental work will be performed with the mammalian retina as the model system. Your application must be submitted via the JobbNorge website (deadline Oct 20): (https://www.jobbnorge.no/en/available-jobs/job/249982/postdoctoral-research-fellow-in-neuroscience).

SeminarNeuroscienceRecording

Reprogramming the nociceptive circuit topology reshapes sexual behavior in C. elegans

Vladyslava Pechuk
Oren lab, Weizmann Institute of Science
Jun 7, 2022

In sexually reproducing species, males and females respond to environmental sensory cues and transform the input into sexually dimorphic traits. Yet, how sexually dimorphic behavior is encoded in the nervous system is poorly understood. We characterize the sexually dimorphic nociceptive behavior in C. elegans – hermaphrodites present a lower pain threshold than males in response to aversive stimuli, and study the underlying neuronal circuits, which are composed of the same neurons that are wired differently. By imaging receptor expression, calcium responses and glutamate secretion, we show that sensory transduction is similar in the two sexes, and therefore explore how downstream network topology shapes dimorphic behavior. We generated a computational model that replicates the observed dimorphic behavior, and used this model to predict simple network rewirings that would switch the behavior between the sexes. We then showed experimentally, using genetic manipulations, artificial gap junctions, automated tracking and optogenetics, that these subtle changes to male connectivity result in hermaphrodite-like aversive behavior in-vivo, while hermaphrodite behavior was more robust to perturbations. Strikingly, when presented with aversive cues, rewired males were compromised in finding mating partners, suggesting that the network topology that enables efficient avoidance of noxious cues would have a reproductive "cost". To summarize, we present a deconstruction of a sex-shared neural circuit that affects sexual behavior, and how to reprogram it. More broadly, our results are an example of how common neuronal circuits changed their function during evolution by subtle topological rewirings to account for different environmental and sexual needs.

SeminarNeuroscienceRecording

A Flash of Darkness within Dusk: Crossover inhibition in the mouse retina

Henrique Von Gersdorff
OHSU
Jan 17, 2022

To survive in the wild small rodents evolved specialized retinas. To escape predators, looming shadows need to be detected with speed and precision. To evade starvation, small seeds, grass, nuts and insects need to also be detected quickly. Some of these succulent seeds and insects may be camouflaged offering only low contrast targets.Moreover, these challenging tasks need to be accomplished continuously at dusk, night, dawn and daytime. Crossover inhibition is thought to be involved in enhancing contrast detectionin the microcircuits of the inner plexiform layer of the mammalian retina. The AII amacrine cells are narrow field cells that play a key role in crossover inhibition. Our lab studies the synaptic physiology that regulates glycine release from AII amacrine cellsin mouse retina. These interneurons receive excitation from rod and conebipolar cells and transmit excitation to ON-type bipolar cell terminals via gap junctions. They also transmit inhibition via multiple glycinergic synapses onto OFF bipolar cell terminals.AII amacrine cells are thus a central hub of synaptic information processing that cross links the ON and the OFF pathways. What are the functions of crossover inhibition? How does it enhance contrast detection at different ambient light levels? How is the dynamicrange, frequency response and synaptic gain of glycine release modulated by luminance levels and circadian rhythms? How is synaptic gain changed by different extracellular neuromodulators, like dopamine, and by intracellular messengers like cAMP, phosphateand Ca2+ ions from Ca2+ channels and Ca2+ stores? My talk will try to answer some of these questions and will pose additional ones. It will end with further hypothesis and speculations on the multiple roles of crossover inhibition.

SeminarNeuroscienceRecording

Gap Junction Coupling between Photoreceptors

Stephen Massey
University of Texas
Sep 19, 2021

Simply put, the goal of my research is to describe the neuronal circuitry of the retina. The organization of the mammalian retina is certainly complex but it is not chaotic. Although there are many cell types, most adhere to a relatively constant morphology and they are distributed in non-random mosaics. Furthermore, each cell type ramifies at a characteristic depth in the retina and makes a stereotyped set of synaptic connections. In other words, these neurons form a series of local circuits across the retina. The next step is to identify the simplest and commonest of these repeating neural circuits. They are the building blocks of retinal function. If we think of it in this way, the retina is a fabulous model for the rest of the CNS. We are interested in identifying specific circuits and cell types that support the different functions of the retina. For example, there appear to be specific pathways for rod and cone mediated vision. Rods are used under low light conditions and rod circuitry is specialized for high sensitivity when photons are scarce (when you’re out camping, starlight). The hallmark of the rod-mediated system is monochromatic vision. In contrast, the cone circuits are specialized for high acuity and color vision under relatively bright or daylight conditions. Individual neurons may be filled with fluorescent dyes under visual control. This is achieved by impaling the cell with a glass microelectrode using a 3D micromanipulator. We are also interested in the diffusion of dye through coupled neuronal networks in the retina. The dye filled cells are also combined with antibody labeling to reveal neuronal connections and circuits. This triple-labeled material may be viewed and reconstructed in 3 dimensions by multi-channel confocal microscopy. We have our own confocal microscope facility in the department and timeslots are available to students in my lab.

SeminarNeuroscienceRecording

A fresh look at the bird retina

Karin Dedek
University of Oldenburg
May 30, 2021

I am working on the vertebrate retina, with a main focus on the mouse and bird retina. Currently my work is focused on three major topics: Functional and molecular analysis of electrical synapses in the retina Circuitry and functional role of retinal interneurons: horizontal cells Circuitry for light-dependent magnetoreception in the bird retina Electrical synapses Electrical synapses (gap junctions) permit fast transmission of electrical signals and passage of metabolites by means of channels, which directly connect the cytoplasm of adjoining cells. A functional gap junction channel consists of two hemichannels (one provided by each of the cells), each comprised of a set of six protein subunits, termed connexins. These building blocks exist in a variety of different subtypes, and the connexin composition determines permeability and gating properties of a gap junction channel, thereby enabling electrical synapses to meet a diversity of physiological requirements. In the retina, various connexins are expressed in different cell types. We study the cellular distribution of different connexins as well as the modulation induced by transmitter action or change of ambient light levels, which leads to altered electrical coupling properties. We are also interested in exploiting them as therapeutic avenue for retinal degeneration diseases. Horizontal cells Horizontal cells receive excitatory input from photoreceptors and provide feedback inhibition to photoreceptors and feedforward inhibition to bipolar cells. Because of strong electrical coupling horizontal cells integrate the photoreceptor input over a wide area and are thought to contribute to the antagonistic organization of bipolar cell and ganglion cell receptive fields and to tune the photoreceptor–bipolar cell synapse with respect to the ambient light conditions. However, the extent to which this influence shapes retinal output is unclear, and we aim to elucidate the functional importance of horizontal cells for retinal signal processing by studying various transgenic mouse models. Retinal circuitry for light-dependent magnetoreception in the bird We are studying which neuronal cell types and pathways in the bird retina are involved in the processing of magnetic signals. Likely, magnetic information is detected in cryptochrome-expressing photoreceptors and leaves the retina through ganglion cell axons that project via the thalamofugal pathway to Cluster N, a part of the visual wulst essential for the avian magnetic compass. Thus, we aim to elucidate the synaptic connections and retinal signaling pathways from putatively magnetosensitive photoreceptors to thalamus-projecting ganglion cells in migratory birds using neuroanatomical and electrophysiological techniques.

SeminarNeuroscienceRecording

Electrical coupling of optic nerve axons - a novel model of gap junctions' involvement in optic nerve function

Adrian Smedowski
Medical University of Silesia
May 31, 2020

Axons in the optic nerve are arranged in bundles and conducting action potential with resistance related to their membrane. Optic nerve axons do not form absolutely independent conductive channels. They are directly coupled by gap junctions formed in majority by neuronal Cx45. Coupling of axons, except known transpassing functions, allows to reduce axonal membrane resistance of optic nerve and accelerates transduction of visual signal. This novel finding have substantial implications for understanding of the pathogenesis of various optic neuropathies and identifies a new potential target for a therapeutic approach.

ePoster

The role of gap junctions and clustered connectivity in emergent synchronisation patterns of spiking inhibitory neuronal networks

Helene Todd, Boris Gutkin, Alex Cayco-Gajic

Bernstein Conference 2024