Hebbian Plasticity
hebbian plasticity
Memory Decoding Journal Club: "Connectomic traces of Hebbian plasticity in the entorhinalhippocampal system
Connectomic traces of Hebbian plasticity in the entorhinalhippocampal system
Learning and Memory
This webinar on learning and memory features three experts—Nicolas Brunel, Ashok Litwin-Kumar, and Julijana Gjorgieva—who present theoretical and computational approaches to understanding how neural circuits acquire and store information across different scales. Brunel discusses calcium-based plasticity and how standard “Hebbian-like” plasticity rules inferred from in vitro or in vivo datasets constrain synaptic dynamics, aligning with classical observations (e.g., STDP) and explaining how synaptic connectivity shapes memory. Litwin-Kumar explores insights from the fruit fly connectome, emphasizing how the mushroom body—a key site for associative learning—implements a high-dimensional, random representation of sensory features. Convergent dopaminergic inputs gate plasticity, reflecting a high-dimensional “critic” that refines behavior. Feedback loops within the mushroom body further reveal sophisticated interactions between learning signals and action selection. Gjorgieva examines how activity-dependent plasticity rules shape circuitry from the subcellular (e.g., synaptic clustering on dendrites) to the cortical network level. She demonstrates how spontaneous activity during development, Hebbian competition, and inhibitory-excitatory balance collectively establish connectivity motifs responsible for key computations such as response normalization.
A biologically plausible inhibitory plasticity rule for world-model learning in SNNs
Memory consolidation is the process by which recent experiences are assimilated into long-term memory. In animals, this process requires the offline replay of sequences observed during online exploration in the hippocampus. Recent experimental work has found that salient but task-irrelevant stimuli are systematically excluded from these replay epochs, suggesting that replay samples from an abstracted model of the world, rather than verbatim previous experiences. We find that this phenomenon can be explained parsimoniously and biologically plausibly by a Hebbian spike time-dependent plasticity rule at inhibitory synapses. Using spiking networks at three levels of abstraction–leaky integrate-and-fire, biophysically detailed, and abstract binary–we show that this rule enables efficient inference of a model of the structure of the world. While plasticity has previously mainly been studied at excitatory synapses, we find that plasticity at excitatory synapses alone is insufficient to accomplish this type of structural learning. We present theoretical results in a simplified model showing that in the presence of Hebbian excitatory and inhibitory plasticity, the replayed sequences form a statistical estimator of a latent sequence, which converges asymptotically to the ground truth. Our work outlines a direct link between the synaptic and cognitive levels of memory consolidation, and highlights a potential conceptually distinct role for inhibition in computing with SNNs.
Memory-enriched computation and learning in spiking neural networks through Hebbian plasticity
Memory is a key component of biological neural systems that enables the retention of information over a huge range of temporal scales, ranging from hundreds of milliseconds up to years. While Hebbian plasticity is believed to play a pivotal role in biological memory, it has so far been analyzed mostly in the context of pattern completion and unsupervised learning. Here, we propose that Hebbian plasticity is fundamental for computations in biological neural systems. We introduce a novel spiking neural network (SNN) architecture that is enriched by Hebbian synaptic plasticity. We experimentally show that our memory-equipped SNN model outperforms state-of-the-art deep learning mechanisms in a sequential pattern-memorization task, as well as demonstrate superior out-of-distribution generalization capabilities compared to these models. We further show that our model can be successfully applied to one-shot learning and classification of handwritten characters, improving over the state-of-the-art SNN model. We also demonstrate the capability of our model to learn associations for audio to image synthesis from spoken and handwritten digits. Our SNN model further presents a novel solution to a variety of cognitive question answering tasks from a standard benchmark, achieving comparable performance to both memory-augmented ANN and SNN-based state-of-the-art solutions to this problem. Finally we demonstrate that our model is able to learn from rewards on an episodic reinforcement learning task and attain near-optimal strategy on a memory-based card game. Hence, our results show that Hebbian enrichment renders spiking neural networks surprisingly versatile in terms of their computational as well as learning capabilities. Since local Hebbian plasticity can easily be implemented in neuromorphic hardware, this also suggests that powerful cognitive neuromorphic systems can be build based on this principle.
Canonical neural networks perform active inference
The free-energy principle and active inference have received a significant attention in the fields of neuroscience and machine learning. However, it remains to be established whether active inference is an apt explanation for any given neural network that actively exchanges with its environment. To address this issue, we show that a class of canonical neural networks of rate coding models implicitly performs variational Bayesian inference under a well-known form of partially observed Markov decision process model (Isomura, Shimazaki, Friston, Commun Biol, 2022). Based on the proposed theory, we demonstrate that canonical neural networks—featuring delayed modulation of Hebbian plasticity—can perform planning and adaptive behavioural control in the Bayes optimal manner, through postdiction of their previous decisions. This scheme enables us to estimate implicit priors under which the agent’s neural network operates and identify a specific form of the generative model. The proposed equivalence is crucial for rendering brain activity explainable to better understand basic neuropsychology and psychiatric disorders. Moreover, this notion can dramatically reduce the complexity of designing self-learning neuromorphic hardware to perform various types of tasks.
Meta-learning synaptic plasticity and memory addressing for continual familiarity detection
Over the course of a lifetime, we process a continual stream of information. Extracted from this stream, memories must be efficiently encoded and stored in an addressable manner for retrieval. To explore potential mechanisms, we consider a familiarity detection task where a subject reports whether an image has been previously encountered. We design a feedforward network endowed with synaptic plasticity and an addressing matrix, meta-learned to optimize familiarity detection over long intervals. We find that anti-Hebbian plasticity leads to better performance than Hebbian and replicates experimental results such as repetition suppression. A combinatorial addressing function emerges, selecting a unique neuron as an index into the synaptic memory matrix for storage or retrieval. Unlike previous models, this network operates continuously, and generalizes to intervals it has not been trained on. Our work suggests a biologically plausible mechanism for continual learning, and demonstrates an effective application of machine learning for neuroscience discovery.
Hebbian Plasticity Supports Predictive Self-Supervised Learning of Disentangled Representations
Discriminating distinct objects and concepts from sensory stimuli is essential for survival. Our brains accomplish this feat by forming meaningful internal representations in deep sensory networks with plastic synaptic connections. Experience-dependent plasticity presumably exploits temporal contingencies between sensory inputs to build these internal representations. However, the precise mechanisms underlying plasticity remain elusive. We derive a local synaptic plasticity model inspired by self-supervised machine learning techniques that shares a deep conceptual connection to Bienenstock-Cooper-Munro (BCM) theory and is consistent with experimentally observed plasticity rules. We show that our plasticity model yields disentangled object representations in deep neural networks without the need for supervision and implausible negative examples. In response to altered visual experience, our model qualitatively captures neuronal selectivity changes observed in the monkey inferotemporal cortex in-vivo. Our work suggests a plausible learning rule to drive learning in sensory networks while making concrete testable predictions.
Network mechanisms underlying representational drift in area CA1 of hippocampus
Recent chronic imaging experiments in mice have revealed that the hippocampal code exhibits non-trivial turnover dynamics over long time scales. Specifically, the subset of cells which are active on any given session in a familiar environment changes over the course of days and weeks. While some cells transition into or out of the code after a few sessions, others are stable over the entire experiment. The mechanisms underlying this turnover are unknown. Here we show that the statistics of turnover are consistent with a model in which non-spatial inputs to CA1 pyramidal cells readily undergo plasticity, while spatially tuned inputs are largely stable over time. The heterogeneity in stability across the cell assembly, as well as the decrease in correlation of the population vector of activity over time, are both quantitatively fit by a simple model with Gaussian input statistics. In fact, such input statistics emerge naturally in a network of spiking neurons operating in the fluctuation-driven regime. This correspondence allows one to map the parameters of a large-scale spiking network model of CA1 onto the simple statistical model, and thereby fit the experimental data quantitatively. Importantly, we show that the observed drift is entirely consistent with random, ongoing synaptic turnover. This synaptic turnover is, in turn, consistent with Hebbian plasticity related to continuous learning in a fast memory system.
Deriving local synaptic learning rules for efficient representations in networks of spiking neurons
How can neural networks learn to efficiently represent complex and high-dimensional inputs via local plasticity mechanisms? Classical models of representation learning assume that input weights are learned via pairwise Hebbian-like plasticity. Here, we show that pairwise Hebbian-like plasticity only works under specific requirements on neural dynamics and input statistics. To overcome these limitations, we derive from first principles a learning scheme based on voltage-dependent synaptic plasticity rules. Here, inhibition learns to locally balance excitatory input in individual dendritic compartments, and thereby can modulate excitatory synaptic plasticity to learn efficient representations. We demonstrate in simulations that this learning scheme works robustly even for complex, high-dimensional and correlated inputs. It also works in the presence of inhibitory transmission delays, where Hebbian-like plasticity typically fails. Our results draw a direct connection between dendritic excitatory-inhibitory balance and voltage-dependent synaptic plasticity as observed in vivo, and suggest that both are crucial for representation learning.
A theory for Hebbian learning in recurrent E-I networks
The Stabilized Supralinear Network is a model of recurrently connected excitatory (E) and inhibitory (I) neurons with a supralinear input-output relation. It can explain cortical computations such as response normalization and inhibitory stabilization. However, the network's connectivity is designed by hand, based on experimental measurements. How the recurrent synaptic weights can be learned from the sensory input statistics in a biologically plausible way is unknown. Earlier theoretical work on plasticity focused on single neurons and the balance of excitation and inhibition but did not consider the simultaneous plasticity of recurrent synapses and the formation of receptive fields. Here we present a recurrent E-I network model where all synaptic connections are simultaneously plastic, and E neurons self-stabilize by recruiting co-tuned inhibition. Motivated by experimental results, we employ a local Hebbian plasticity rule with multiplicative normalization for E and I synapses. We develop a theoretical framework that explains how plasticity enables inhibition balanced excitatory receptive fields that match experimental results. We show analytically that sufficiently strong inhibition allows neurons' receptive fields to decorrelate and distribute themselves across the stimulus space. For strong recurrent excitation, the network becomes stabilized by inhibition, which prevents unconstrained self-excitation. In this regime, external inputs integrate sublinearly. As in the Stabilized Supralinear Network, this results in response normalization and winner-takes-all dynamics: when two competing stimuli are presented, the network response is dominated by the stronger stimulus while the weaker stimulus is suppressed. In summary, we present a biologically plausible theoretical framework to model plasticity in fully plastic recurrent E-I networks. While the connectivity is derived from the sensory input statistics, the circuit performs meaningful computations. Our work provides a mathematical framework of plasticity in recurrent networks, which has previously only been studied numerically and can serve as the basis for a new generation of brain-inspired unsupervised machine learning algorithms.
Imaging the influences of sensory experience on visual system circuit development
Using a combination of in vivo imaging of neuronal circuit functional and structural dynamics, we have investigated the mechanisms by which patterned neural activity and sensory experience alter connectivity in the developing brain. We have identified, in addition to the long-hypothesized Hebbian structural plasticity mechanisms, a kind of plasticity induced by the absence of correlated firing that we dubbed “Stentian plasticity”. In the talk I will discuss the phenomenology and some mechanistic insights regarding Stentian mechanisms in brain development. Further, I will show how glia may have a key role in circuit remodeling during development. These studies have led us to an appreciation of the importance of neuron-glia interactions in early development and the ability of patterned activity to guide circuit wiring.
Neuronal morphology imposes a tradeoff between stability, accuracy and efficiency of synaptic scaling
Synaptic scaling is a homeostatic normalization mechanism that preserves relative synaptic strengths by adjusting them with a common factor. This multiplicative change is believed to be critical, since synaptic strengths are involved in learning and memory retention. Further, this homeostatic process is thought to be crucial for neuronal stability, playing a stabilizing role in otherwise runaway Hebbian plasticity [1-3]. Synaptic scaling requires a mechanism to sense total neuron activity and globally adjust synapses to achieve some activity set-point [4]. This process is relatively slow, which places limits on its ability to stabilize network activity [5]. Here we show that this slow response is inevitable in realistic neuronal morphologies. Furthermore, we reveal that global scaling can in fact be a source of instability unless responsiveness or scaling accuracy are sacrificed." "A neuron with tens of thousands of synapses must regulate its own excitability to compensate for changes in input. The time requirement for global feedback can introduce critical phase lags in a neuron’s response to perturbation. The severity of phase lag increases with neuron size. Further, a more expansive morphology worsens cell responsiveness and scaling accuracy, especially in distal regions of the neuron. Local pools of reserve receptors improve efficiency, potentiation, and scaling, but this comes at a cost. Trafficking large quantities of receptors requires time, exacerbating the phase lag and instability. Local homeostatic feedback mitigates instability, but this too comes at the cost of reducing scaling accuracy." "Realization of the phase lag instability requires a unified model of synaptic scaling, regulation, and transport. We present such a model with global and local feedback in realistic neuron morphologies (Fig. 1). This combined model shows that neurons face a tradeoff between stability, accuracy, and efficiency. Global feedback is required for synaptic scaling but favors either system stability or efficiency. Large receptor pools improve scaling accuracy in large morphologies but worsen both stability and efficiency. Local feedback improves the stability-efficiency tradeoff at the cost of scaling accuracy. This project introduces unexplored constraints on neuron size, morphology, and synaptic scaling that are weakened by an interplay between global and local feedback.
Spatio-Temporal Pattern Selectivity from Homeostatic Hebbian Plasticity
COSYNE 2022
Development of orientation selective receptive fields via Hebbian plasticity
COSYNE 2022
Hebbian plasticity with a predictive component enables local learning in deep networks
COSYNE 2022
Hebbian plasticity with a predictive component enables local learning in deep networks
COSYNE 2022
One-shot learning of paired associations by a reservoir computing model with Hebbian plasticity
COSYNE 2022
One-shot learning of paired associations by a reservoir computing model with Hebbian plasticity
COSYNE 2022
Sharing weights with noise-canceling anti-Hebbian plasticity
COSYNE 2022
Sharing weights with noise-canceling anti-Hebbian plasticity
COSYNE 2022
Spatio-Temporal Pattern Selectivity from Homeostatic Hebbian Plasticity
COSYNE 2022
Online contrastive PCA with Hebbian / anti-Hebbian plasticity
COSYNE 2023
Rapid learning of nonlinear network dynamics via dopamine-gated non-Hebbian plasticity
COSYNE 2025
Nonlinear Hebbian plasticity for dimensionality reduction
Neuromatch 5