← Back

Hierarchical Network

Topic spotlight
TopicWorld Wide

hierarchical network

Discover seminars, jobs, and research tagged with hierarchical network across World Wide.
5 curated items4 Seminars1 ePoster
Updated almost 4 years ago
5 items · hierarchical network
5 results
SeminarNeuroscienceRecording

Wiring Minimization of Deep Neural Networks Reveal Conditions in which Multiple Visuotopic Areas Emerge

Dina Obeid
Harvard University
Dec 14, 2021

The visual system is characterized by multiple mirrored visuotopic maps, with each repetition corresponding to a different visual area. In this work we explore whether such visuotopic organization can emerge as a result of minimizing the total wire length between neurons connected in a deep hierarchical network. Our results show that networks with purely feedforward connectivity typically result in a single visuotopic map, and in certain cases no visuotopic map emerges. However, when we modify the network by introducing lateral connections, with sufficient lateral connectivity among neurons within layers, multiple visuotopic maps emerge, where some connectivity motifs yield mirrored alternations of visuotopic maps–a signature of biological visual system areas. These results demonstrate that different connectivity profiles have different emergent organizations under the minimum total wire length hypothesis, and highlight that characterizing the large-scale spatial organizing of tuning properties in a biological system might also provide insights into the underlying connectivity.

SeminarNeuroscienceRecording

Structures in space and time - Hierarchical network dynamics in the amygdala

Yael Bitterman
Luethi lab, FMI for Biomedical Research
Jun 15, 2021

In addition to its role in the learning and expression of conditioned behavior, the amygdala has long been implicated in the regulation of persistent states, such as anxiety and drive. Yet, it is not evident what projections of the neuronal activity capture the functional role of the network across such different timescales, specifically when behavior and neuronal space are complex and high-dimensional. We applied a data-driven dynamical approach for the analysis of calcium imaging data from the basolateral amygdala, collected while mice performed complex, self-paced behaviors, including spatial exploration, free social interaction, and goal directed actions. The seemingly complex network dynamics was effectively described by a hierarchical, modular structure, that corresponded to behavior on multiple timescales. Our results describe the response of the network activity to perturbations along different dimensions and the interplay between slow, state-like representation and the fast processing of specific events and actions schemes. We suggest hierarchical dynamical models offer a unified framework to capture the involvement of the amygdala in transitions between persistent states underlying such different functions as sensory associative learning, action selection and emotional processing. * Work done in collaboration with Jan Gründemann, Sol Fustinana, Alejandro Tsai and Julien Courtin (@theLüthiLab)

SeminarNeuroscienceRecording

Burst-dependent synaptic plasticity can coordinate learning in hierarchical circuits

Richard Naud
University of Ottawa
Aug 31, 2020

Synaptic plasticity is believed to be a key physiological mechanism for learning. It is well-established that it depends on pre and postsynaptic activity. However, models that rely solely on pre and postsynaptic activity for synaptic changes have, to date, not been able to account for learning complex tasks that demand hierarchical networks. Here, we show that if synaptic plasticity is regulated by high-frequency bursts of spikes, then neurons higher in the hierarchy can coordinate the plasticity of lower-level connections. Using simulations and mathematical analyses, we demonstrate that, when paired with short-term synaptic dynamics, regenerative activity in the apical dendrites, and synaptic plasticity in feedback pathways, a burst-dependent learning rule can solve challenging tasks that require deep network architectures. Our results demonstrate that well-known properties of dendrites, synapses, and synaptic plasticity are sufficient to enable sophisticated learning in hierarchical circuits.

SeminarNeuroscienceRecording

Burst-dependent synaptic plasticity can coordinate learning in hierarchical circuits

Blake Richards
McGill University
Apr 2, 2020

Synaptic plasticity is believed to be a key physiological mechanism for learning. It is well-established that it depends on pre and postsynaptic activity. However, models that rely solely on pre and postsynaptic activity for synaptic changes have, to date, not been able to account for learning complex tasks that demand hierarchical networks. Here, we show that if synaptic plasticity is regulated by high-frequency bursts of spikes, then neurons higher in the hierarchy can coordinate the plasticity of lower-level connections. Using simulations and mathematical analyses, we demonstrate that, when paired with short-term synaptic dynamics, regenerative activity in the apical dendrites, and synaptic plasticity in feedback pathways, a burst-dependent learning rule can solve challenging tasks that require deep network architectures. Our results demonstrate that well-known properties of dendrites, synapses, and synaptic plasticity are sufficient to enable sophisticated learning in hierarchical circuits.

ePoster

Toward hierarchical compositionality with shallow hierarchical networks

Francisco López, Judith Massmann, Jochen Triesch

Bernstein Conference 2024