← Back

Hierarchy

Topic spotlight
TopicWorld Wide

hierarchy

Discover seminars, jobs, and research tagged with hierarchy across World Wide.
53 curated items29 Seminars24 ePosters
Updated over 2 years ago
53 items · hierarchy
53 results
SeminarNeuroscience

From pecking order to ketamine - neural mechanism of social and emotional behavior

Hailan Hu
Zhejiang University School of Medicine, Hangzhou, China
Jun 21, 2023

Emotions and social interactions color our lives and shape our behaviors. Using animal models and engineered manipulations, we aim to understand how social and emotional behaviors are encoded in the brain, focusing on the neural circuits underlying dominance hierarchy and depression. This lecture will highlight our recent discoveries on how downward social mobility leads to depression; how ketamine tames depression by blocking burst firing in the brain’s antireward center; and, how glia-neuron interaction plays a surprising role in this process. I will also present our recent work on the mechanism underlying the sustained antidepressant activity of ketamine and its brain region specificity. With these results, we hope to illuminate on a more unified theory on ketamine’s mode of action and inspire new treatment strategies for depression.

SeminarNeuroscience

From pecking order to ketamine - neural mechanism of social and emotional behavior

Hailan Hu
Zhejiang University School of Medicine, Hangzhou, China
Jun 20, 2023

Emotions and social interactions color our lives and shape our behaviors. Using animal models and engineered manipulations, we aim to understand how social and emotional behaviors are encoded in the brain, focusing on the neural circuits underlying dominance hierarchy and depression. This lecture will highlight our recent discoveries on how downward social mobility leads to depression; how ketamine tames depression by blocking burst firing in the brain’s antireward center; and, how glia-neuron interaction plays a surprising role in this process. I will also present our recent work on the mechanism underlying the sustained antidepressant activity of ketamine and its brain region specificity. With these results, we hope to illuminate on a more unified theory on ketamine’s mode of action and inspire new treatment strategies for depression.

SeminarNeuroscienceRecording

A sense without sensors: how non-temporal stimulus features influence the perception and the neural representation of time

Domenica Bueti
SISSA, Trieste (Italy)
Apr 18, 2023

Any sensory experience of the world, from the touch of a caress to the smile on our friend’s face, is embedded in time and it is often associated with the perception of the flow of it. The perception of time is therefore a peculiar sensory experience built without dedicated sensors. How the perception of time and the content of a sensory experience interact to give rise to this unique percept is unclear. A few empirical evidences show the existence of this interaction, for example the speed of a moving object or the number of items displayed on a computer screen can bias the perceived duration of those objects. However, to what extent the coding of time is embedded within the coding of the stimulus itself, is sustained by the activity of the same or distinct neural populations and subserved by similar or distinct neural mechanisms is far from clear. Addressing these puzzles represents a way to gain insight on the mechanism(s) through which the brain represents the passage of time. In my talk I will present behavioral and neuroimaging studies to show how concurrent changes of visual stimulus duration, speed, visual contrast and numerosity, shape and modulate brain’s and pupil’s responses and, in case of numerosity and time, influence the topographic organization of these features along the cortical visual hierarchy.

SeminarNeuroscienceRecording

Asymmetric signaling across the hierarchy of cytoarchitecture within the human connectome

Linden Parkes
Rutgers Brain Health Institute
Mar 21, 2023

Cortical variations in cytoarchitecture form a sensory-fugal axis that shapes regional profiles of extrinsic connectivity and is thought to guide signal propagation and integration across the cortical hierarchy. While neuroimaging work has shown that this axis constrains local properties of the human connectome, it remains unclear whether it also shapes the asymmetric signaling that arises from higher-order topology. Here, we used network control theory to examine the amount of energy required to propagate dynamics across the sensory-fugal axis. Our results revealed an asymmetry in this energy, indicating that bottom-up transitions were easier to complete compared to top-down. Supporting analyses demonstrated that asymmetries were underpinned by a connectome topology that is wired to support efficient bottom-up signaling. Lastly, we found that asymmetries correlated with differences in communicability and intrinsic neuronal time scales and lessened throughout youth. Our results show that cortical variation in cytoarchitecture may guide the formation of macroscopic connectome topology.

SeminarNeuroscienceRecording

Predictive modeling, cortical hierarchy, and their computational implications

Choong-Wan Woo & Seok-Jun Hong
Sungkyunkwan University
Jan 16, 2023

Predictive modeling and dimensionality reduction of functional neuroimaging data have provided rich information about the representations and functional architectures of the human brain. While these approaches have been effective in many cases, we will discuss how neglecting the internal dynamics of the brain (e.g., spontaneous activity, global dynamics, effective connectivity) and its underlying computational principles may hinder our progress in understanding and modeling brain functions. By reexamining evidence from our previous and ongoing work, we will propose new hypotheses and directions for research that consider both internal dynamics and the computational principles that may govern brain processes.

SeminarNeuroscienceRecording

Flexible selection of task-relevant features through population gating

Joao Barbosa
Ostojic lab, Ecole Normale Superieure
Dec 6, 2022

Brains can gracefully weed out irrelevant stimuli to guide behavior. This feat is believed to rely on a progressive selection of task-relevant stimuli across the cortical hierarchy, but the specific across-area interactions enabling stimulus selection are still unclear. Here, we propose that population gating, occurring within A1 but controlled by top-down inputs from mPFC, can support across-area stimulus selection. Examining single-unit activity recorded while rats performed an auditory context-dependent task, we found that A1 encoded relevant and irrelevant stimuli along a common dimension of its neural space. Yet, the relevant stimulus encoding was enhanced along an extra dimension. In turn, mPFC encoded only the stimulus relevant to the ongoing context. To identify candidate mechanisms for stimulus selection within A1, we reverse-engineered low-rank RNNs trained on a similar task. Our analyses predicted that two context-modulated neural populations gated their preferred stimulus in opposite contexts, which we confirmed in further analyses of A1. Finally, we show in a two-region RNN how population gating within A1 could be controlled by top-down inputs from PFC, enabling flexible across-area communication despite fixed inter-areal connectivity.

SeminarNeuroscienceRecording

Hierarchical transformation of visual event timing representations in the human brain: response dynamics in early visual cortex and timing-tuned responses in association cortices

Evi Hendrikx
Utrecht University
Sep 27, 2022

Quantifying the timing (duration and frequency) of brief visual events is vital to human perception, multisensory integration and action planning. For example, this allows us to follow and interact with the precise timing of speech and sports. Here we investigate how visual event timing is represented and transformed across the brain’s hierarchy: from sensory processing areas, through multisensory integration areas, to frontal action planning areas. We hypothesized that the dynamics of neural responses to sensory events in sensory processing areas allows derivation of event timing representations. This would allow higher-level processes such as multisensory integration and action planning to use sensory timing information, without the need for specialized central pacemakers or processes. Using 7T fMRI and neural model-based analyses, we found responses that monotonically increase in amplitude with visual event duration and frequency, becoming increasingly clear from primary visual cortex to lateral occipital visual field maps. Beginning in area MT/V5, we found a gradual transition from monotonic to tuned responses, with response amplitudes peaking at different event timings in different recording sites. While monotonic response components were limited to the retinotopic location of the visual stimulus, timing-tuned response components were independent of the recording sites' preferred visual field positions. These tuned responses formed a network of topographically organized timing maps in superior parietal, postcentral and frontal areas. From anterior to posterior timing maps, multiple events were increasingly integrated, response selectivity narrowed, and responses focused increasingly on the middle of the presented timing range. These results suggest that responses to event timing are transformed from the human brain’s sensory areas to the association cortices, with the event’s temporal properties being increasingly abstracted from the response dynamics and locations of early sensory processing. The resulting abstracted representation of event timing is then propagated through areas implicated in multisensory integration and action planning.

SeminarNeuroscience

On the contributions of retinal direction selectivity to cortical motion processing in mice

Rune Nguyen Rasmussen
University of Copenhagen
Jun 9, 2022

Cells preferentially responding to visual motion in a particular direction are said to be direction-selective, and these were first identified in the primary visual cortex. Since then, direction-selective responses have been observed in the retina of several species, including mice, indicating motion analysis begins at the earliest stage of the visual hierarchy. Yet little is known about how retinal direction selectivity contributes to motion processing in the visual cortex. In this talk, I will present our experimental efforts to narrow this gap in our knowledge. To this end, we used genetic approaches to disrupt direction selectivity in the retina and mapped neuronal responses to visual motion in the visual cortex of mice using intrinsic signal optical imaging and two-photon calcium imaging. In essence, our work demonstrates that direction selectivity computed at the level of the retina causally serves to establish specialized motion responses in distinct areas of the mouse visual cortex. This finding thus compels us to revisit our notions of how the brain builds complex visual representations and underscores the importance of the processing performed in the periphery of sensory systems.

SeminarNeuroscience

Synthetic and natural images unlock the power of recurrency in primary visual cortex

Andreea Lazar
Ernst Strüngmann Institute (ESI) for Neuroscience
May 19, 2022

During perception the visual system integrates current sensory evidence with previously acquired knowledge of the visual world. Presumably this computation relies on internal recurrent interactions. We record populations of neurons from the primary visual cortex of cats and macaque monkeys and find evidence for adaptive internal responses to structured stimulation that change on both slow and fast timescales. In the first experiment, we present abstract images, only briefly, a protocol known to produce strong and persistent recurrent responses in the primary visual cortex. We show that repetitive presentations of a large randomized set of images leads to enhanced stimulus encoding on a timescale of minutes to hours. The enhanced encoding preserves the representational details required for image reconstruction and can be detected in post-exposure spontaneous activity. In a second experiment, we show that the encoding of natural scenes across populations of V1 neurons is improved, over a timescale of hundreds of milliseconds, with the allocation of spatial attention. Given the hierarchical organization of the visual cortex, contextual information from the higher levels of the processing hierarchy, reflecting high-level image regularities, can inform the activity in V1 through feedback. We hypothesize that these fast attentional boosts in stimulus encoding rely on recurrent computations that capitalize on the presence of high-level visual features in natural scenes. We design control images dominated by low-level features and show that, in agreement with our hypothesis, the attentional benefits in stimulus encoding vanish. We conclude that, in the visual system, powerful recurrent processes optimize neuronal responses, already at the earliest stages of cortical processing.

SeminarNeuroscienceRecording

A transcriptomic axis predicts state modulation of cortical interneurons

Stephane Bugeon
Harris & Carandini's lab, UCL
Apr 26, 2022

Transcriptomics has revealed that cortical inhibitory neurons exhibit a great diversity of fine molecular subtypes, but it is not known whether these subtypes have correspondingly diverse activity patterns in the living brain. We show that inhibitory subtypes in primary visual cortex (V1) have diverse correlates with brain state, but that this diversity is organized by a single factor: position along their main axis of transcriptomic variation. We combined in vivo 2-photon calcium imaging of mouse V1 with a novel transcriptomic method to identify mRNAs for 72 selected genes in ex vivo slices. We classified inhibitory neurons imaged in layers 1-3 into a three-level hierarchy of 5 Subclasses, 11 Types, and 35 Subtypes using previously-defined transcriptomic clusters. Responses to visual stimuli differed significantly only across Subclasses, suppressing cells in the Sncg Subclass while driving cells in the other Subclasses. Modulation by brain state differed at all hierarchical levels but could be largely predicted from the first transcriptomic principal component, which also predicted correlations with simultaneously recorded cells. Inhibitory Subtypes that fired more in resting, oscillatory brain states have less axon in layer 1, narrower spikes, lower input resistance and weaker adaptation as determined in vitro and express more inhibitory cholinergic receptors. Subtypes firing more during arousal had the opposite properties. Thus, a simple principle may largely explain how diverse inhibitory V1 Subtypes shape state-dependent cortical processing.

SeminarNeuroscience

What does the primary visual cortex tell us about object recognition?

Tiago Marques
MIT
Jan 23, 2022

Object recognition relies on the complex visual representations in cortical areas at the top of the ventral stream hierarchy. While these are thought to be derived from low-level stages of visual processing, this has not been shown, yet. Here, I describe the results of two projects exploring the contributions of primary visual cortex (V1) processing to object recognition using artificial neural networks (ANNs). First, we developed hundreds of ANN-based V1 models and evaluated how their single neurons approximate those in the macaque V1. We found that, for some models, single neurons in intermediate layers are similar to their biological counterparts, and that the distributions of their response properties approximately match those in V1. Furthermore, we observed that models that better matched macaque V1 were also more aligned with human behavior, suggesting that object recognition is derived from low-level. Motivated by these results, we then studied how an ANN’s robustness to image perturbations relates to its ability to predict V1 responses. Despite their high performance in object recognition tasks, ANNs can be fooled by imperceptibly small, explicitly crafted perturbations. We observed that ANNs that better predicted V1 neuronal activity were also more robust to adversarial attacks. Inspired by this, we developed VOneNets, a new class of hybrid ANN vision models. Each VOneNet contains a fixed neural network front-end that simulates primate V1 followed by a neural network back-end adapted from current computer vision models. After training, VOneNets were substantially more robust, outperforming state-of-the-art methods on a set of perturbations. While current neural network architectures are arguably brain-inspired, these results demonstrate that more precisely mimicking just one stage of the primate visual system leads to new gains in computer vision applications and results in better models of the primate ventral stream and object recognition behavior.

SeminarNeuroscienceRecording

NMC4 Short Talk: Untangling Contributions of Distinct Features of Images to Object Processing in Inferotemporal Cortex

Hanxiao Lu
Yale University
Nov 30, 2021

How do humans perceive daily objects of various features and categorize these seemingly intuitive and effortless mental representations? Prior literature focusing on the role of the inferotemporal region (IT) has revealed object category clustering that is consistent with the semantic predefined structure (superordinate, ordinate, subordinate). It has however been debated whether the neural signals in the IT regions are a reflection of such categorical hierarchy [Wen et al.,2018; Bracci et al., 2017]. Visual attributes of images that correlated with semantic and category dimensions may have confounded these prior results. Our study aimed to address this debate by building and comparing models using the DNN AlexNet, to explain the variance in representational dissimilarity matrix (RDM) of neural signals in the IT region. We found that mid and high level perceptual attributes of the DNN model contribute the most to neural RDMs in the IT region. Semantic categories, as in predefined structure, were moderately correlated with mid to high DNN layers (r = [0.24 - 0.36]). Variance partitioning analysis also showed that the IT neural representations were mostly explained by DNN layers, while semantic categorical RDMs brought little additional information. In light of these results, we propose future works should focus more on the specific role IT plays in facilitating the extraction and coding of visual features that lead to the emergence of categorical conceptualizations.

SeminarNeuroscience

Neural mechanisms of altered states of consciousness under psychedelics

Adeel Razi and Devon Stoliker
Monash Biomedical Imaging
Nov 10, 2021

Interest in psychedelic compounds is growing due to their remarkable potential for understanding altered neural states and their breakthrough status to treat various psychiatric disorders. However, there are major knowledge gaps regarding how psychedelics affect the brain. The Computational Neuroscience Laboratory at the Turner Institute for Brain and Mental Health, Monash University, uses multimodal neuroimaging to test hypotheses of the brain’s functional reorganisation under psychedelics, informed by the accounts of hierarchical predictive processing, using dynamic causal modelling (DCM). DCM is a generative modelling technique which allows to infer the directed connectivity among brain regions using functional brain imaging measurements. In this webinar, Associate Professor Adeel Razi and PhD candidate Devon Stoliker will showcase a series of previous and new findings of how changes to synaptic mechanisms, under the control of serotonin receptors, across the brain hierarchy influence sensory and associative brain connectivity. Understanding these neural mechanisms of subjective and therapeutic effects of psychedelics is critical for rational development of novel treatments and for the design and success of future clinical trials. Associate Professor Adeel Razi is a NHMRC Investigator Fellow and CIFAR Azrieli Global Scholar at the Turner Institute of Brain and Mental Health, Monash University. He performs cross-disciplinary research combining engineering, physics, and machine-learning. Devon Stoliker is a PhD candidate at the Turner Institute for Brain and Mental Health, Monash University. His interest in consciousness and psychiatry has led him to investigate the neural mechanisms of classic psychedelic effects in the brain.

SeminarNeuroscienceRecording

Edge Computing using Spiking Neural Networks

Shirin Dora
Loughborough University
Nov 4, 2021

Deep learning has made tremendous progress in the last year but it's high computational and memory requirements impose challenges in using deep learning on edge devices. There has been some progress in lowering memory requirements of deep neural networks (for instance, use of half-precision) but there has been minimal effort in developing alternative efficient computational paradigms. Inspired by the brain, Spiking Neural Networks (SNN) provide an energy-efficient alternative to conventional rate-based neural networks. However, SNN architectures that employ the traditional feedforward and feedback pass do not fully exploit the asynchronous event-based processing paradigm of SNNs. In the first part of my talk, I will present my work on predictive coding which offers a fundamentally different approach to developing neural networks that are particularly suitable for event-based processing. In the second part of my talk, I will present our work on development of approaches for SNNs that target specific problems like low response latency and continual learning. References Dora, S., Bohte, S. M., & Pennartz, C. (2021). Deep Gated Hebbian Predictive Coding Accounts for Emergence of Complex Neural Response Properties Along the Visual Cortical Hierarchy. Frontiers in Computational Neuroscience, 65. Saranirad, V., McGinnity, T. M., Dora, S., & Coyle, D. (2021, July). DoB-SNN: A New Neuron Assembly-Inspired Spiking Neural Network for Pattern Classification. In 2021 International Joint Conference on Neural Networks (IJCNN) (pp. 1-6). IEEE. Machingal, P., Thousif, M., Dora, S., Sundaram, S., Meng, Q. (2021). A Cross Entropy Loss for Spiking Neural Networks. Expert Systems with Applications (under review).

SeminarNeuroscience

Representation transfer and signal denoising through topographic modularity

Barna Zajzon
Morrison lab, Forschungszentrum Jülich, Germany
Nov 3, 2021

To prevail in a dynamic and noisy environment, the brain must create reliable and meaningful representations from sensory inputs that are often ambiguous or corrupt. Since only information that permeates the cortical hierarchy can influence sensory perception and decision-making, it is critical that noisy external stimuli are encoded and propagated through different processing stages with minimal signal degradation. Here we hypothesize that stimulus-specific pathways akin to cortical topographic maps may provide the structural scaffold for such signal routing. We investigate whether the feature-specific pathways within such maps, characterized by the preservation of the relative organization of cells between distinct populations, can guide and route stimulus information throughout the system while retaining representational fidelity. We demonstrate that, in a large modular circuit of spiking neurons comprising multiple sub-networks, topographic projections are not only necessary for accurate propagation of stimulus representations, but can also help the system reduce sensory and intrinsic noise. Moreover, by regulating the effective connectivity and local E/I balance, modular topographic precision enables the system to gradually improve its internal representations and increase signal-to-noise ratio as the input signal passes through the network. Such a denoising function arises beyond a critical transition point in the sharpness of the feed-forward projections, and is characterized by the emergence of inhibition-dominated regimes where population responses along stimulated maps are amplified and others are weakened. Our results indicate that this is a generalizable and robust structural effect, largely independent of the underlying model specificities. Using mean-field approximations, we gain deeper insight into the mechanisms responsible for the qualitative changes in the system’s behavior and show that these depend only on the modular topographic connectivity and stimulus intensity. The general dynamical principle revealed by the theoretical predictions suggest that such a denoising property may be a universal, system-agnostic feature of topographic maps, and may lead to a wide range of behaviorally relevant regimes observed under various experimental conditions: maintaining stable representations of multiple stimuli across cortical circuits; amplifying certain features while suppressing others (winner-take-all circuits); and endow circuits with metastable dynamics (winnerless competition), assumed to be fundamental in a variety of tasks.

SeminarPsychology

Memory for Latent Representations: An Account of Working Memory that Builds on Visual Knowledge for Efficient and Detailed Visual Representations

Brad Wyble
Penn State University
Jul 6, 2021

Visual knowledge obtained from our lifelong experience of the world plays a critical role in our ability to build short-term memories. We propose a mechanistic explanation of how working memory (WM) representations are built from the latent representations of visual knowledge and can then be reconstructed. The proposed model, Memory for Latent Representations (MLR), features a variational autoencoder with an architecture that corresponds broadly to the human visual system and an activation-based binding pool of neurons that binds items’ attributes to tokenized representations. The simulation results revealed that shape information for stimuli that the model was trained on, can be encoded and retrieved efficiently from latents in higher levels of the visual hierarchy. On the other hand, novel patterns that are completely outside the training set can be stored from a single exposure using only latents from early layers of the visual system. Moreover, the representation of a given stimulus can have multiple codes, representing specific visual features such as shape or color, in addition to categorical information. Finally, we validated our model by testing a series of predictions against behavioral results acquired from WM tasks. The model provides a compelling demonstration of visual knowledge yielding the formation of compact visual representation for efficient memory encoding.

SeminarNeuroscience

Contrasting neuronal circuits driving reactive and cognitive fear

Mario Penzo
NIMH
Jun 27, 2021

The last decade in the field of neuroscience has been marked by intense debate on the meaning of the term fear. Whereas some have argued that fear (as well as other emotions) relies on cognitive capacities that are unique to humans, others view it as a negative state constructed from essential building blocks. This latter definition posits that fear states are associated with varying readouts that one could consider to be parallel processes or serial events tied to a specific hierarchy. Within this framework, innate defensive behaviors are considered to be common displays of fear states that lie under the control of hard-wired brain circuits. As a general rule, these defensive behaviors can be classified as either reactive or cognitive based on a thread imminence continuum. However, while evidence of the neuronal circuits that lead to these divergent behavioral strategies has accrued over the last decades, most literature has considered these responses in isolation. As a result, important misconceptions have arisen regarding how fear circuits are distributed in the brain and the contribution of specific nodes within these circuits to defensive behaviors. To mitigate the status quo, I will conduct a systematic comparison of brain circuits driving the expression of freezing and active avoidance behavior, which I will use as well-studied proxies of reactive and cognitive fear, respectively. In addition, I propose that by integrating associative information with interoceptive and exteroceptive signals the central nucleus of the amygdala plays a crucial role in biasing the selection of defensive behaviors.

SeminarNeuroscienceRecording

The neural dynamics of causal Inference across the cortical hierarchy

Uta Noppeney
Donders Institute for Brain, Cognition and Behaviour
May 26, 2021
SeminarNeuroscienceRecording

The emergence and modulation of time in neural circuits and behavior

Luca Mazzucato
University of Oregon
Jan 21, 2021

Spontaneous behavior in animals and humans shows a striking amount of variability both in the spatial domain (which actions to choose) and temporal domain (when to act). Concatenating actions into sequences and behavioral plans reveals the existence of a hierarchy of timescales ranging from hundreds of milliseconds to minutes. How do multiple timescales emerge from neural circuit dynamics? How do circuits modulate temporal responses to flexibly adapt to changing demands? In this talk, we will present recent results from experiments and theory suggesting a new computational mechanism generating the temporal variability underlying naturalistic behavior and cortical activity. We will show how neural activity from premotor areas unfolds through temporal sequences of attractors, which predict the intention to act. These sequences naturally emerge from recurrent cortical networks, where correlated neural variability plays a crucial role in explaining the observed variability in action timing. We will then discuss how reaction times can be accelerated or slowed down via gain modulation, flexibly induced by neuromodulation or perturbations; and how gain modulation may control response timing in the visual cortex. Finally, we will present a new biologically plausible way to generate a reservoir of multiple timescales in cortical circuits.

SeminarNeuroscience

Top-down Modulation in Human Visual Cortex

Mohamed Abdelhack
Washington University in St. Louis
Dec 16, 2020

Human vision flaunts a remarkable ability to recognize objects in the surrounding environment even in the absence of complete visual representation of these objects. This process is done almost intuitively and it was not until scientists had to tackle this problem in computer vision that they noticed its complexity. While current advances in artificial vision systems have made great strides exceeding human level in normal vision tasks, it has yet to achieve a similar robustness level. One cause of this robustness is the extensive connectivity that is not limited to a feedforward hierarchical pathway similar to the current state-of-the-art deep convolutional neural networks but also comprises recurrent and top-down connections. They allow the human brain to enhance the neural representations of degraded images in concordance with meaningful representations stored in memory. The mechanisms by which these different pathways interact are still not understood. In this seminar, studies concerning the effect of recurrent and top-down modulation on the neural representations resulting from viewing blurred images will be presented. Those studies attempted to uncover the role of recurrent and top-down connections in human vision. The results presented challenge the notion of predictive coding as a mechanism for top-down modulation of visual information during natural vision. They show that neural representation enhancement (sharpening) appears to be a more dominant process of different levels of visual hierarchy. They also show that inference in visual recognition is achieved through a Bayesian process between incoming visual information and priors from deeper processing regions in the brain.

SeminarNeuroscienceRecording

The emergence and modulation of time in neural circuits and behavior

Luca Mazzucato
University of Oregon
Nov 24, 2020

Spontaneous behavior in animals and humans shows a striking amount of variability both in the spatial domain (which actions to choose) and temporal domain (when to act). Concatenating actions into sequences and behavioral plans reveals the existence of a hierarchy of timescales ranging from hundreds of milliseconds to minutes. How do multiple timescales emerge from neural circuit dynamics? How do circuits modulate temporal responses to flexibly adapt to changing demands? In this talk, we will present recent results from experiments and theory suggesting a new computational mechanism generating the temporal variability underlying naturalistic behavior. We will show how neural activity from premotor areas unfolds through temporal sequences of attractors, which predict the intention to act. These sequences naturally emerge from recurrent cortical networks, where correlated neural variability plays a crucial role in explaining the observed variability in action timing. We will then discuss how reaction times in these recurrent circuits can be accelerated or slowed down via gain modulation, induced by neuromodulation or perturbations. Finally, we will present a general mechanism producing a reservoir of multiple timescales in recurrent networks.

SeminarNeuroscienceRecording

Burst-dependent synaptic plasticity can coordinate learning in hierarchical circuits

Richard Naud
University of Ottawa
Aug 31, 2020

Synaptic plasticity is believed to be a key physiological mechanism for learning. It is well-established that it depends on pre and postsynaptic activity. However, models that rely solely on pre and postsynaptic activity for synaptic changes have, to date, not been able to account for learning complex tasks that demand hierarchical networks. Here, we show that if synaptic plasticity is regulated by high-frequency bursts of spikes, then neurons higher in the hierarchy can coordinate the plasticity of lower-level connections. Using simulations and mathematical analyses, we demonstrate that, when paired with short-term synaptic dynamics, regenerative activity in the apical dendrites, and synaptic plasticity in feedback pathways, a burst-dependent learning rule can solve challenging tasks that require deep network architectures. Our results demonstrate that well-known properties of dendrites, synapses, and synaptic plasticity are sufficient to enable sophisticated learning in hierarchical circuits.

SeminarNeuroscience

Using evolutionary algorithms to explore single-cell heterogeneity and microcircuit operation in the hippocampus

Andrea Navas-Olive
Instituto Cajal CSIC
Jul 18, 2020

The hippocampus-entorhinal system is critical for learning and memory. Recent cutting-edge single-cell technologies from RNAseq to electrophysiology are disclosing a so far unrecognized heterogeneity within the major cell types (1). Surprisingly, massive high-throughput recordings of these very same cells identify low dimensional microcircuit dynamics (2,3). Reconciling both views is critical to understand how the brain operates. " "The CA1 region is considered high in the hierarchy of the entorhinal-hippocampal system. Traditionally viewed as a single layered structure, recent evidence has disclosed an exquisite laminar organization across deep and superficial pyramidal sublayers at the transcriptional, morphological and functional levels (1,4,5). Such a low-dimensional segregation may be driven by a combination of intrinsic, biophysical and microcircuit factors but mechanisms are unknown." "Here, we exploit evolutionary algorithms to address the effect of single-cell heterogeneity on CA1 pyramidal cell activity (6). First, we developed a biophysically realistic model of CA1 pyramidal cells using the Hodgkin-Huxley multi-compartment formalism in the Neuron+Python platform and the morphological database Neuromorpho.org. We adopted genetic algorithms (GA) to identify passive, active and synaptic conductances resulting in realistic electrophysiological behavior. We then used the generated models to explore the functional effect of intrinsic, synaptic and morphological heterogeneity during oscillatory activities. By combining results from all simulations in a logistic regression model we evaluated the effect of up/down-regulation of different factors. We found that muyltidimensional excitatory and inhibitory inputs interact with morphological and intrinsic factors to determine a low dimensional subset of output features (e.g. phase-locking preference) that matches non-fitted experimental data.

SeminarNeuroscience

Neural coding in the auditory cortex - "Emergent Scientists Seminar Series

Dr Jennifer Lawlor & Mr Aleksandar Ivanov
Johns Hopkins University / University of Oxford
Jul 16, 2020

Dr Jennifer Lawlor Title: Tracking changes in complex auditory scenes along the cortical pathway Complex acoustic environments, such as a busy street, are characterised by their everchanging dynamics. Despite their complexity, listeners can readily tease apart relevant changes from irrelevant variations. This requires continuously tracking the appropriate sensory evidence while discarding noisy acoustic variations. Despite the apparent simplicity of this perceptual phenomenon, the neural basis of the extraction of relevant information in complex continuous streams for goal-directed behavior is currently not well understood. As a minimalistic model for change detection in complex auditory environments, we designed broad-range tone clouds whose first-order statistics change at a random time. Subjects (humans or ferrets) were trained to detect these changes.They were faced with the dual-task of estimating the baseline statistics and detecting a potential change in those statistics at any moment. To characterize the extraction and encoding of relevant sensory information along the cortical hierarchy, we first recorded the brain electrical activity of human subjects engaged in this task using electroencephalography. Human performance and reaction times improved with longer pre-change exposure, consistent with improved estimation of baseline statistics. Change-locked and decision-related EEG responses were found in a centro-parietal scalp location, whose slope depended on change size, consistent with sensory evidence accumulation. To further this investigation, we performed a series of electrophysiological recordings in the primary auditory cortex (A1), secondary auditory cortex (PEG) and frontal cortex (FC) of the fully trained behaving ferret. A1 neurons exhibited strong onset responses and change-related discharges specific to neuronal tuning. PEG population showed reduced onset-related responses, but more categorical change-related modulations. Finally, a subset of FC neurons (dlPFC/premotor) presented a generalized response to all change-related events only during behavior. We show using a Generalized Linear Model (GLM) that the same subpopulation in FC encodes sensory and decision signals, suggesting that FC neurons could operate conversion of sensory evidence to perceptual decision. All together, these area-specific responses suggest a behavior-dependent mechanism of sensory extraction and generalization of task-relevant event. Aleksandar Ivanov Title: How does the auditory system adapt to different environments: A song of echoes and adaptation

SeminarNeuroscienceRecording

Burst-dependent synaptic plasticity can coordinate learning in hierarchical circuits

Blake Richards
McGill University
Apr 2, 2020

Synaptic plasticity is believed to be a key physiological mechanism for learning. It is well-established that it depends on pre and postsynaptic activity. However, models that rely solely on pre and postsynaptic activity for synaptic changes have, to date, not been able to account for learning complex tasks that demand hierarchical networks. Here, we show that if synaptic plasticity is regulated by high-frequency bursts of spikes, then neurons higher in the hierarchy can coordinate the plasticity of lower-level connections. Using simulations and mathematical analyses, we demonstrate that, when paired with short-term synaptic dynamics, regenerative activity in the apical dendrites, and synaptic plasticity in feedback pathways, a burst-dependent learning rule can solve challenging tasks that require deep network architectures. Our results demonstrate that well-known properties of dendrites, synapses, and synaptic plasticity are sufficient to enable sophisticated learning in hierarchical circuits.

ePoster

On The Role Of Temporal Hierarchy In Spiking Neural Networks

Filippo Moro, Pau Aceituno, Melika Payvand

Bernstein Conference 2024

ePoster

Differential encoding of temporal context and expectation across the visual hierarchy

COSYNE 2022

ePoster

High-level prediction signals cascade through the macaque face-processing hierarchy

COSYNE 2022

ePoster

Hierarchy of brain oscillations emerges from recurrent error correction

COSYNE 2022

ePoster

Hierarchy of brain oscillations emerges from recurrent error correction

COSYNE 2022

ePoster

High-level prediction signals cascade through the macaque face-processing hierarchy

COSYNE 2022

ePoster

Modeling the formation of the visual hierarchy

COSYNE 2022

ePoster

Modeling the formation of the visual hierarchy

COSYNE 2022

ePoster

Multi-task representations across human cortex transform along a sensory-to-motor hierarchy

COSYNE 2022

ePoster

Multi-task representations across human cortex transform along a sensory-to-motor hierarchy

COSYNE 2022

ePoster

Predictability in the spiking activity of mouse visual cortex decreases along the processing hierarchy

COSYNE 2022

ePoster

Predictability in the spiking activity of mouse visual cortex decreases along the processing hierarchy

COSYNE 2022

ePoster

A more realistic predictive coding model of the cortical hierarchy

Siavash Golkar, Tiberiu Tesileanu, Yanis Bahroun, Anirvan Sengupta, Dmitri Chklovskii

COSYNE 2023

ePoster

Visual representation of different levels of abstraction along the mouse visual hierarchy

Benjie Miao, Peng Jiang, Joshua H. Siegle, Shailaja Akella, Peter Ledochowitsch, Hannah Belski, Severine Durand, Shawn R. Olsen, Xiaoxuan Jia

COSYNE 2023

ePoster

Hierarchy of chaotic dynamics in random modular neural networks

Lukasz Kusmierz, Ulises Pereira Obilinovic, Zhixin Lu, Dana Mastrovito, Stefan Mihalas

COSYNE 2025

ePoster

Towards Discovering the Hierarchy of the Olfactory Perceptual Space via Hyperbolic Embeddings

Farzaneh Taleb, Aniss Aiman Medbouhi, Giovanni Luca Marchetti, Danica Kragic

COSYNE 2025

ePoster

Tracking the distance to criticality across the mouse visual hierarchy

Brendan Harris, Leonardo Gollo, Ben Fulcher

COSYNE 2025

ePoster

Weakly structured selectivity and high-dimensional representations across the cortical hierarchy

Lorenzo Posani, Shuqi Wang, Samuel Muscinelli, Liam Paninski, Stefano Fusi

COSYNE 2025

ePoster

Breakdown of auditory processing hierarchy in human sleep

Sigurd Alnes, Ellen van Maren, Ida Boccalaro, Camille G. Mignardot, Debora Ledergerber, Johannes Sarnthein, Markus Schmidt, Antoine Adamantidis, Lukas L. Imbach, Kaspar Schindler, Maxime O. Baud, Athina Tzovara

FENS Forum 2024

ePoster

Directional and flexible flow of sensory information along the cortical hierarchy during whisker-based discrimination

Pierre-Marie Garderes, Florent Haiss

FENS Forum 2024

ePoster

Early life stress and living in a complex environment: Effects on social hierarchy and stress coping in mice

Lisa Bouwman, Kelly Spanou, Viviana Canicatti, Paul Lucassen, Rixt van der Veen

FENS Forum 2024

ePoster

Hierarchy of prediction errors shapes context-dependent sensory representations

Matthias Tsai, Jasper Teutsch, Willem Wybo, Fritjof Helmchen, Abhishek Banerjee, Walter Senn

FENS Forum 2024

ePoster

Neural timescales hierarchy across the human cortex changes from wakefulness to sleep

Riccardo Cusinato, Camille Mignardot, Andrea Seiler, Kaspar Schindler, Maxime Baud, Athina Tzovara

FENS Forum 2024

ePoster

Respiratory entrainment to auditory hierarchy

Alessandro Tavano, Anton Zickler

FENS Forum 2024