← Back

High Throughput

Topic spotlight
TopicWorld Wide

high throughput

Discover seminars, jobs, and research tagged with high throughput across World Wide.
4 curated items4 Seminars
Updated about 4 years ago
4 items · high throughput
4 results
SeminarNeuroscienceRecording

What transcriptomics tells us about retinal development, disease and evolution

Joshua Sanes
Harvard University
Nov 21, 2021

Classification of neurons, long viewed as a fairly boring enterprise, has emerged as a major bottleneck in analysis of neural circuits. High throughput single cell RNA-seq has provided a new way to improve the situation. We initially applied this method to mouse retina, showing that its five neuronal classes (photoreceptors, three groups of interneurons, and retinal ganglion cells) can be divided into 130 discrete types. We then applied the method to other species including human, macaque, zebrafish and chick. With the atlases in hand, we are now using them to address questions about how retinal cell types diversify, how they differ in their responses to injury and disease, and the extent to which cell classes and types are conserved among vertebrates.

SeminarNeuroscience

Dorothy J Killam Lecture: Cell Type Classification and Circuit Mapping in the Mouse Brain

Hongkui Zeng
Executive Vice President and Director of Allen Institute for Brain Science, Seattle, USA
Feb 23, 2021

To understand the function of the brain and how its dysfunction leads to brain diseases, it is essential to have a deep understanding of the cell type composition of the brain, how the cell types are connected with each other and what their roles are in circuit function. At the Allen Institute, we have built multiple platforms, including single-cell transcriptomics, single and multi-patching electrophysiology, 3D reconstruction of neuronal morphology, high throughput brain-wide connectivity mapping, and large-scale neuronal activity imaging, to characterize the transcriptomic, physiological, morphological, and connectional properties of different types of neurons in a standardized way, towards a taxonomy of cell types and a description of their wiring diagram for the mouse brain, with a focus on the visual cortico-thalamic system. Building such knowledge base lays the foundation towards the understanding of the computational mechanisms of brain circuit function.