Hippocampal Circuits
hippocampal circuits
Dissecting subcircuits underlying hippocampal function
Liset M de la Prida is a Physicist (1994) and PhD in Neuroscience (1998), who leads the Laboratorio de Circuitos Neuronales at the Instituto Cajal, Madrid, Spain (http://www.hippo-circuitlab.es). The main focus of her lab is to understand the function of the hippocampal circuits in the normal and the diseased brain, in particular oscillations and neuronal representations. She is a leading international expert in the study of the basic mechanisms of physiological ripples and epileptic fast ripples, with strong visibility as developer of novel groundbreaking electrophysiological tools. Dr. de la Prida serves as an Editor for prestigious journals including eLife, Journal of Neuroscience Methods and eNeuro, and has commissioning duties in the American Epilepsy Society, FENS and the Spanish Society for Neurosciences.
Extrinsic control and autonomous computation in the hippocampal CA1 circuit
In understanding circuit operations, a key issue is the extent to which neuronal spiking reflects local computation or responses to upstream inputs. Because pyramidal cells in CA1 do not have local recurrent projections, it is currently assumed that firing in CA1 is inherited from its inputs – thus, entorhinal inputs provide communication with the rest of the neocortex and the outside world, whereas CA3 inputs provide internal and past memory representations. Several studies have attempted to prove this hypothesis, by lesioning or silencing either area CA3 or the entorhinal cortex and examining the effect of firing on CA1 pyramidal cells. Despite the intense and careful work in this research area, the magnitudes and types of the reported physiological impairments vary widely across experiments. At least part of the existing variability and conflicts is due to the different behavioral paradigms, designs and evaluation methods used by different investigators. Simultaneous manipulations in the same animal or even separate manipulations of the different inputs to the hippocampal circuits in the same experiment are rare. To address these issues, I used optogenetic silencing of unilateral and bilateral mEC, of the local CA1 region, and performed bilateral pharmacogenetic silencing of the entire CA3 region. I combined this with high spatial resolution recording of local field potentials (LFP) in the CA1-dentate axis and simultaneously collected firing pattern data from thousands of single neurons. Each experimental animal had up to two of these manipulations being performed simultaneously. Silencing the medial entorhinal (mEC) largely abolished extracellular theta and gamma currents in CA1, without affecting firing rates. In contrast, CA3 and local CA1 silencing strongly decreased firing of CA1 neurons without affecting theta currents. Each perturbation reconfigured the CA1 spatial map. Yet, the ability of the CA1 circuit to support place field activity persisted, maintaining the same fraction of spatially tuned place fields, and reliable assembly expression as in the intact mouse. Thus, the CA1 network can maintain autonomous computation to support coordinated place cell assemblies without reliance on its inputs, yet these inputs can effectively reconfigure and assist in maintaining stability of the CA1 map.
‘How development sculpts hippocampal circuits’
NMC4 Short Talk: Neural Representation: Bridging Neuroscience and Philosophy
We understand the brain in representational terms. E.g., we understand spatial navigation by appealing to the spatial properties that hippocampal cells represent, and the operations hippocampal circuits perform on those representations (Moser et al., 2008). Philosophers have been concerned with the nature of representation, and recently neuroscientists entered the debate, focusing specifically on neural representations. (Baker & Lansdell, n.d.; Egan, 2019; Piccinini & Shagrir, 2014; Poldrack, 2020; Shagrir, 2001). We want to know what representations are, how to discover them in the brain, and why they matter so much for our understanding of the brain. Those questions are framed in a traditional philosophical way: we start with explanations that use representational notions, and to more deeply understand those explanations we ask, what are representations — what is the definition of representation? What is it for some bit of neural activity to be a representation? I argue that there is an alternative, and much more fruitful, approach. Rather than asking what representations are, we should ask what the use of representational *notions* allows us to do in neuroscience — what thinking in representational terms helps scientists do or explain. I argue that this framing offers more fruitful ground for interdisciplinary collaboration by distinguishing the philosophical concerns that have a place in neuroscience from those that don’t (namely the definitional or metaphysical questions about representation). And I argue for a particular view of representational notions: they allow us to impose the structure of one domain onto another as a model of its causal structue. So, e.g., thinking about the hippocampus as representing spatial properties is a way of taking structures in those spatial properties, and projecting those structures (and algorithms that would implement them) them onto the brain as models of its causal structure.
Organization and control of hippocampal circuits in epilepsy
Basket cells are key GABAergic inhibitory interneurons that target the somata and proximal dendrites, enabling efficient control of the timing and rate of spiking of their postsynaptic targets. In all cortical circuits, there are two major types of basket cell that exhibit striking developmental, molecular, anatomical, and physiological differences. In this talk, I will discuss recent results that reveal the tightly coupled complementarity of these two key microcircuit regulatory modules, demonstrating a novel form of brain-state-specific segregation of inhibition during spontaneous behavior, with implications for the assessment of dysregulated inhibition in epilepsy. In addition, I will describe recent advances in our understanding of the spatio-temporal dynamics of endocannabinoid signaling in hippocampal circuits and discuss how abnormal amplification of these activity-dependent signaling processes leads to surprising downstream effects in seizures.
Prefrontal-Hippocampal Circuits as Target for Cognitive Amelioration in Brain Disorders
Presynaptic plasticity in hippocampal circuits
Christophe Mulle is a cellular neurobiologist with expertise in electrophysiology of synaptic transmission and an international leader in studies on glutamate receptors and hippocampal synaptic plasticity. He was among the first to identify and characterize functional nicotinic receptors in the mammalian brain while working in the laboratory of Jean-Pierre Changeux at the Pasteur Institute. He then generated knock-out mice for KAR subunits at the Salk Institute in the laboratory of Steve Heinemann, which have proven to be instrumental for understanding the function of these elusive glutamate receptors in synaptic function and plasticity.
How development sculpts memory circuits
In mammals, the selective transformation of transient experience into stored memory occurs in the hippocampus, which develops representations of specific events in the context in which they occur. In this talk, I will focus on the development of hippocampal circuits and the self-organized dynamics embedded in them since the latter critically support the role of the hippocampus in memory. I will discuss evidence that adult hippocampal cells and circuits are remarkably sculpted by development, as early as embryonic neurogenesis. We argue that these primary developmental programs provide a scaffold onto which later experience of the external world can be grafted. Next, I will present data on the emergence of recurrent connectivity and self-organized dynamics in hippocampal circuits and outline the critical turn points and discontinuities in that developmental journey.
Hippocampal disinhibitory circuits: cell types, connectivity and function
The concept of a dynamic excitation / inhibition ratio, that can shape information flow in cortical circuits during complex behavioural tasks due to circuit disinhibition, has recently arisen as an important and conserved processing motif. It has been also recognized that, in cortical circuits, a subpopulation of GABAergic cells that express vasoactive intestinal polypeptide (VIP) innervates selectively inhibitory interneurons, providing for circuit disinhibition as a possible outcome, depending on the network state and behavioural context. In this talk, I will highlight the latest discoveries on the dynamic organization of hippocampal disinhibitory circuits with a focus on VIP-expressing interneurons. I will discuss the neuron types that can be involved in disinhibition and their local circuit and long-range synaptic connections. I will also discuss some recent findings on how hippocampal VIP circuits may coordinate spatial learning.
Theta-modulated memory encoding and retrieval in recurrent hippocampal circuits
Bernstein Conference 2024
Adolescent stress impairs behavioural flexibility in adults through population-specific alterations to ventral hippocampal circuits
FENS Forum 2024
Disentangling emotional memories in ventral hippocampal circuits
FENS Forum 2024
Presynaptic plasticity and memory encoding in hippocampal circuits
FENS Forum 2024
Resolving decision-making during emotional conflicts by ventral hippocampal circuits
FENS Forum 2024