Hippocampal Subfields
hippocampal subfields
Dynamic endocrine modulation of the nervous system
Sex hormones are powerful neuromodulators of learning and memory. In rodents and nonhuman primates estrogen and progesterone influence the central nervous system across a range of spatiotemporal scales. Yet, their influence on the structural and functional architecture of the human brain is largely unknown. Here, I highlight findings from a series of dense-sampling neuroimaging studies from my laboratory designed to probe the dynamic interplay between the nervous and endocrine systems. Individuals underwent brain imaging and venipuncture every 12-24 hours for 30 consecutive days. These procedures were carried out under freely cycling conditions and again under a pharmacological regimen that chronically suppresses sex hormone production. First, resting state fMRI evidence suggests that transient increases in estrogen drive robust increases in functional connectivity across the brain. Time-lagged methods from dynamical systems analysis further reveals that these transient changes in estrogen enhance within-network integration (i.e. global efficiency) in several large-scale brain networks, particularly Default Mode and Dorsal Attention Networks. Next, using high-resolution hippocampal subfield imaging, we found that intrinsic hormone fluctuations and exogenous hormone manipulations can rapidly and dynamically shape medial temporal lobe morphology. Together, these findings suggest that neuroendocrine factors influence the brain over short and protracted timescales.
Learning and updating structured knowledge
During our everyday lives, much of what we experience is familiar and predictable. We typically follow the same morning routine, take the same route to work, and encounter the same colleagues. However, every once in a while, we encounter a surprising event that violates our expectations. When we encounter such violations of our expectations, it is adaptive to update our internal model of the world in order to make better predictions in the future. The hippocampus is thought to support both the learning of the predictable structure of our environment, as well as the detection and encoding of violations. However, the hippocampus is a complex and heterogeneous structure, composed of different subfields that are thought to subserve different functions. As such, it is not yet known how the hippocampus accomplishes the learning and updating of structured knowledge. Using behavioral methods and high-resolution fMRI, I'll show that during learning of repeated and predicted events, hippocampal subfields differentially integrate and separate event representations, thus learning the structure of ongoing experience. I then move on to discuss how when events violate our predictions, there is a shift in communication between hippocampal subfields, potentially allowing for efficient encoding of the novel and surprising information. If time permits, I'll present an additional behavioral study showing that violations of predictions promote detailed memories. Together, these studies advance our understanding of how we adaptively learn and update our knowledge.
Resting-state functional connectivity alterations between hippocampal subfields and prefrontal cortex in Alzheimer’s disease
FENS Forum 2024