Histamine
histamine
Neuromodulation of sleep integrity
The arousal construct underlies a spectrum of behaviors that include sleep, exploration, feeding, sexual activity and adaptive stress. Pathological arousal conditions include stress, anxiety disorders, and addiction. The dynamics between arousal state transitions are modulated by norepinephrine neurons in the locus coeruleus, histaminergic neurons in the hypothalamus, dopaminergic neurons in the mesencephalon and cholinergic neurons in the basal forebrain. The hypocretin/orexin system in the lateral hypothalamus I will also present a new mechanism underlying sleep fragmentation during aging. Hcrt neurons are hyperexcitable in aged mice. We identify a potassium conductance known as the M-current, as a critical player in maintaining excitability of Hcrt neurons. Genetic disruption of KCNQ channels in Hcrt neurons of young animals results in sleep fragmentation. In contrast, treatment of aged animals with a KCNQ channel opener restores sleep/wake architecture. These data point to multiple circuits modulating sleep integrity across lifespan.
Top-down modulation of the retinal code via histaminergic neurons in the hypothalamus
The mammalian retina is considered an autonomous neuronal tissue, yet there is evidence that it receives inputs from the brain in the form of retinopetal axons. A sub-population of these axons was suggested to belong to histaminergic neurons located in the tuberomammillarynucleus (TMN) of the hypothalamus. Using viral injections to the TMN, we identified these retinopetal axons and found that although few in number, they extensively branch to cover a large portion of the retina. Using Ca2+ imaging and electrophysiology, we show that histamine application increases spontaneous firing rates and alters the light responses of a significant portion of retinal ganglion cells (RGCs). Direct activation of the histaminergic axons also induced significant changes in RGCs activity. Since activity in the TMN was shown to correlate with arousal state, our data suggest the retinal code may change with the animal's behavioral state through the release of histamine from TMN histaminergic neurons.
40 years of headache research
Lifelong devotion to headache research has led to many discoveries. First a series of studies of brain blood flow during attacks of migraine. The results showed changes compatible with cortical spreading depression in migraine without aura effectively negating the then prevailing vasospastic/ischemic theory. In migraine without aura no changes in brain blood flow. This difference was crucial for the separation of migraine with aura and migraine without aura in the first and subsequent editions of the international headache classification headed by me. Then a human migraine provocation model that has elucidated the molecular mechanisms of migraine. Successively we showed in series of papers the importance of nitric oxide, histamine, CGRP, PACAP and prostanoids. Therapeutic effectiveness of antagonizing these provokers by tonabersat, L-NMMA, CGRP receptor antagonists and monoclonal antibodies and of NSAIDs. Present and future attempts to put all these signaling mechanisms into a framework but it is not easy
Histaminergic circadian modulation of mouse retinal output in vivo
FENS Forum 2024
Investigating the role for the neuromodulator histamine in the development of the bed nucleus of the stria terminalis (BNST)
FENS Forum 2024