Human Cornea
human cornea
Computational models and experimental methods for the human cornea
The eye is a multi-component biological system, where mechanics, optics, transport phenomena and chemical reactions are strictly interlaced, characterized by the typical bio-variability in sizes and material properties. The eye’s response to external action is patient-specific and it can be predicted only by a customized approach, that accounts for the multiple physics and for the intrinsic microstructure of the tissues, developed with the aid of forefront means of computational biomechanics. Our activity in the last years has been devoted to the development of a comprehensive model of the cornea that aims at being entirely patient-specific. While the geometrical aspects are fully under control, given the sophisticated diagnostic machinery able to provide a fully three-dimensional images of the eye, the major difficulties are related to the characterization of the tissues, which require the setup of in-vivo tests to complement the well documented results of in-vitro tests. The interpretation of in-vivo tests is very complex, since the entire structure of the eye is involved and the characterization of the single tissue is not trivial. The availability of micromechanical models constructed from detailed images of the eye represents an important support for the characterization of the corneal tissues, especially in the case of pathologic conditions. In this presentation I will provide an overview of the research developed in our group in terms of computational models and experimental approaches developed for the human cornea.