← Back

Human Performance

Topic spotlight
TopicWorld Wide

human performance

Discover seminars, jobs, and research tagged with human performance across World Wide.
9 curated items9 Seminars
Updated over 1 year ago
9 items · human performance
9 results
SeminarPsychology

Error Consistency between Humans and Machines as a function of presentation duration

Thomas Klein
Eberhard Karls Universität Tübingen
Jun 30, 2024

Within the last decade, Deep Artificial Neural Networks (DNNs) have emerged as powerful computer vision systems that match or exceed human performance on many benchmark tasks such as image classification. But whether current DNNs are suitable computational models of the human visual system remains an open question: While DNNs have proven to be capable of predicting neural activations in primate visual cortex, psychophysical experiments have shown behavioral differences between DNNs and human subjects, as quantified by error consistency. Error consistency is typically measured by briefly presenting natural or corrupted images to human subjects and asking them to perform an n-way classification task under time pressure. But for how long should stimuli ideally be presented to guarantee a fair comparison with DNNs? Here we investigate the influence of presentation time on error consistency, to test the hypothesis that higher-level processing drives behavioral differences. We systematically vary presentation times of backward-masked stimuli from 8.3ms to 266ms and measure human performance and reaction times on natural, lowpass-filtered and noisy images. Our experiment constitutes a fine-grained analysis of human image classification under both image corruptions and time pressure, showing that even drastically time-constrained humans who are exposed to the stimuli for only two frames, i.e. 16.6ms, can still solve our 8-way classification task with success rates way above chance. We also find that human-to-human error consistency is already stable at 16.6ms.

SeminarNeuroscience

Applied cognitive neuroscience to improve learning and therapeutics

Greg Applebaum
Department of Psychiatry, University of California, San Diego
May 15, 2024

Advancements in cognitive neuroscience have provided profound insights into the workings of the human brain and the methods used offer opportunities to enhance performance, cognition, and mental health. Drawing upon interdisciplinary collaborations in the University of California San Diego, Human Performance Optimization Lab, this talk explores the application of cognitive neuroscience principles in three domains to improve human performance and alleviate mental health challenges. The first section will discuss studies addressing the role of vision and oculomotor function in athletic performance and the potential to train these foundational abilities to improve performance and sports outcomes. The second domain considers the use of electrophysiological measurements of the brain and heart to detect, and possibly predict, errors in manual performance, as shown in a series of studies with surgeons as they perform robot-assisted surgery. Lastly, findings from clinical trials testing personalized interventional treatments for mood disorders will be discussed in which the temporal and spatial parameters of transcranial magnetic stimulation (TMS) are individualized to test if personalization improves treatment response and can be used as predictive biomarkers to guide treatment selection. Together, these translational studies use the measurement tools and constructs of cognitive neuroscience to improve human performance and well-being.

SeminarNeuroscience

The bounded rationality of probability distortion

Laurence T Maloney
NYU
Nov 9, 2021

In decision-making under risk (DMR) participants' choices are based on probability values systematically different from those that are objectively correct. Similar systematic distortions are found in tasks involving relative frequency judgments (JRF). These distortions limit performance in a wide variety of tasks and an evident question is, why do we systematically fail in our use of probability and relative frequency information? We propose a Bounded Log-Odds Model (BLO) of probability and relative frequency distortion based on three assumptions: (1) log-odds: probability and relative frequency are mapped to an internal log-odds scale, (2) boundedness: the range of representations of probability and relative frequency are bounded and the bounds change dynamically with task, and (3) variance compensation: the mapping compensates in part for uncertainty in probability and relative frequency values. We compared human performance in both DMR and JRF tasks to the predictions of the BLO model as well as eleven alternative models each missing one or more of the underlying BLO assumptions (factorial model comparison). The BLO model and its assumptions proved to be superior to any of the alternatives. In a separate analysis, we found that BLO accounts for individual participants’ data better than any previous model in the DMR literature. We also found that, subject to the boundedness limitation, participants’ choice of distortion approximately maximized the mutual information between objective task-relevant values and internal values, a form of bounded rationality.

SeminarNeuroscienceRecording

Do deep learning latent spaces resemble human brain representations?

Rufin VanRullen
Centre de Recherche Cerveau et Cognition (CERCO)
Mar 11, 2021

In recent years, artificial neural networks have demonstrated human-like or super-human performance in many tasks including image or speech recognition, natural language processing (NLP), playing Go, chess, poker and video-games. One remarkable feature of the resulting models is that they can develop very intuitive latent representations of their inputs. In these latent spaces, simple linear operations tend to give meaningful results, as in the well-known analogy QUEEN-WOMAN+MAN=KING. We postulate that human brain representations share essential properties with these deep learning latent spaces. To verify this, we test whether artificial latent spaces can serve as a good model for decoding brain activity. We report improvements over state-of-the-art performance for reconstructing seen and imagined face images from fMRI brain activation patterns, using the latent space of a GAN (Generative Adversarial Network) model coupled with a Variational AutoEncoder (VAE). With another GAN model (BigBiGAN), we can decode and reconstruct natural scenes of any category from the corresponding brain activity. Our results suggest that deep learning can produce high-level representations approaching those found in the human brain. Finally, I will discuss whether these deep learning latent spaces could be relevant to the study of consciousness.

SeminarNeuroscienceRecording

Cross Domain Generalisation in Humans and Machines

Leonidas Alex Doumas
The University of Edinburgh
Feb 3, 2021

Recent advances in deep learning have produced models that far outstrip human performance in a number of domains. However, where machine learning approaches still fall far short of human-level performance is in the capacity to transfer knowledge across domains. While a human learner will happily apply knowledge acquired in one domain (e.g., mathematics) to a different domain (e.g., cooking; a vinaigrette is really just a ratio between edible fat and acid), machine learning models still struggle profoundly at such tasks. I will present a case that human intelligence might be (at least partially) usefully characterised by our ability to transfer knowledge widely, and a framework that we have developed for learning representations that support such transfer. The model is compared to current machine learning approaches.

SeminarNeuroscienceRecording

Context and Comparison During Open-Ended Induction

Robert Goldstone
Indiana University, Bloomington
Jan 20, 2021

A key component of humans' striking creativity in solving problems is our ability to construct novel descriptions to help us characterize novel categories. Bongard problems, which challenge the problem solver to come up with a rule for distinguishing visual scenes that fall into two categories, provide an elegant test of this ability. Bongard problems are challenging for both human and machine category learners because only a handful of example scenes are presented for each category, and they often require the open-ended creation of new descriptions. A new sub-type of Bongard problem called Physical Bongard Problems (PBPs) is introduced, which require solvers to perceive and predict the physical spatial dynamics implicit in the depicted scenes. The PATHS (Perceiving And Testing Hypotheses on Structures) computational model which can solve many PBPs is presented, and compared to human performance on the same problems. PATHS and humans are similarly affected by the ordering of scenes within a PBP, with spatially and temporally juxtaposed scenes promoting category learning when they are similar and belong to different categories, or dissimilar and belong to the same category. The core theoretical commitments of PATHS which we believe to also exemplify human open-ended category learning are a) the continual perception of new scene descriptions over the course of category learning; b) the context-dependent nature of that perceptual process, in which the scenes establish the context for one another; c) hypothesis construction by combining descriptions into logical expressions; and d) bi-directional interactions between perceiving new aspects of scenes and constructing hypotheses for the rule that distinguishes categories.

SeminarNeuroscience

Neural coding in the auditory cortex - "Emergent Scientists Seminar Series

Dr Jennifer Lawlor & Mr Aleksandar Ivanov
Johns Hopkins University / University of Oxford
Jul 16, 2020

Dr Jennifer Lawlor Title: Tracking changes in complex auditory scenes along the cortical pathway Complex acoustic environments, such as a busy street, are characterised by their everchanging dynamics. Despite their complexity, listeners can readily tease apart relevant changes from irrelevant variations. This requires continuously tracking the appropriate sensory evidence while discarding noisy acoustic variations. Despite the apparent simplicity of this perceptual phenomenon, the neural basis of the extraction of relevant information in complex continuous streams for goal-directed behavior is currently not well understood. As a minimalistic model for change detection in complex auditory environments, we designed broad-range tone clouds whose first-order statistics change at a random time. Subjects (humans or ferrets) were trained to detect these changes.They were faced with the dual-task of estimating the baseline statistics and detecting a potential change in those statistics at any moment. To characterize the extraction and encoding of relevant sensory information along the cortical hierarchy, we first recorded the brain electrical activity of human subjects engaged in this task using electroencephalography. Human performance and reaction times improved with longer pre-change exposure, consistent with improved estimation of baseline statistics. Change-locked and decision-related EEG responses were found in a centro-parietal scalp location, whose slope depended on change size, consistent with sensory evidence accumulation. To further this investigation, we performed a series of electrophysiological recordings in the primary auditory cortex (A1), secondary auditory cortex (PEG) and frontal cortex (FC) of the fully trained behaving ferret. A1 neurons exhibited strong onset responses and change-related discharges specific to neuronal tuning. PEG population showed reduced onset-related responses, but more categorical change-related modulations. Finally, a subset of FC neurons (dlPFC/premotor) presented a generalized response to all change-related events only during behavior. We show using a Generalized Linear Model (GLM) that the same subpopulation in FC encodes sensory and decision signals, suggesting that FC neurons could operate conversion of sensory evidence to perceptual decision. All together, these area-specific responses suggest a behavior-dependent mechanism of sensory extraction and generalization of task-relevant event. Aleksandar Ivanov Title: How does the auditory system adapt to different environments: A song of echoes and adaptation