Ideal Observer
ideal observer
An investigation of perceptual biases in spiking recurrent neural networks trained to discriminate time intervals
Magnitude estimation and stimulus discrimination tasks are affected by perceptual biases that cause the stimulus parameter to be perceived as shifted toward the mean of its distribution. These biases have been extensively studied in psychophysics and, more recently and to a lesser extent, with neural activity recordings. New computational techniques allow us to train spiking recurrent neural networks on the tasks used in the experiments. This provides us with another valuable tool with which to investigate the network mechanisms responsible for the biases and how behavior could be modeled. As an example, in this talk I will consider networks trained to discriminate the durations of temporal intervals. The trained networks presented the contraction bias, even though they were trained with a stimulus sequence without temporal correlations. The neural activity during the delay period carried information about the stimuli of the current trial and previous trials, this being one of the mechanisms that originated the contraction bias. The population activity described trajectories in a low-dimensional space and their relative locations depended on the prior distribution. The results can be modeled as an ideal observer that during the delay period sees a combination of the current and the previous stimuli. Finally, I will describe how the neural trajectories in state space encode an estimate of the interval duration. The approach could be applied to other cognitive tasks.
Spatial uncertainty provides a unifying account of navigation behavior and grid field deformations
To localize ourselves in an environment for spatial navigation, we rely on vision and self-motion inputs, which only provide noisy and partial information. It is unknown how the resulting uncertainty affects navigation behavior and neural representations. Here we show that spatial uncertainty underlies key effects of environmental geometry on navigation behavior and grid field deformations. We develop an ideal observer model, which continually updates probabilistic beliefs about its allocentric location by optimally combining noisy egocentric visual and self-motion inputs via Bayesian filtering. This model directly yields predictions for navigation behavior and also predicts neural responses under population coding of location uncertainty. We simulate this model numerically under manipulations of a major source of uncertainty, environmental geometry, and support our simulations by analytic derivations for its most salient qualitative features. We show that our model correctly predicts a wide range of experimentally observed effects of the environmental geometry and its change on homing response distribution and grid field deformation. Thus, our model provides a unifying, normative account for the dependence of homing behavior and grid fields on environmental geometry, and identifies the unavoidable uncertainty in navigation as a key factor underlying these diverse phenomena.
Suboptimal human inference inverts the bias-variance trade-off for decisions with asymmetric evidence
Solutions to challenging inference problems are often subject to a fundamental trade-off between bias (being systematically wrong) that is minimized with complex inference strategies and variance (being oversensitive to uncertain observations) that is minimized with simple inference strategies. However, this trade-off is based on the assumption that the strategies being considered are optimal for their given complexity and thus has unclear relevance to the frequently suboptimal inference strategies used by humans. We examined inference problems involving rare, asymmetrically available evidence, which a large population of human subjects solved using a diverse set of strategies that were suboptimal relative to the Bayesian ideal observer. These suboptimal strategies reflected an inversion of the classic bias-variance trade-off: subjects who used more complex, but imperfect, Bayesian-like strategies tended to have lower variance but high bias because of incorrect tuning to latent task features, whereas subjects who used simpler heuristic strategies tended to have higher variance because they operated more directly on the observed samples but displayed weaker, near-normative bias. Our results yield new insights into the principles that govern individual differences in behavior that depends on rare-event inference, and, more generally, about the information-processing trade-offs that are sensitive to not just the complexity, but also the optimality of the inference process.