Illusions
illusions
Perceptual illusions we understand well, and illusions which aren’t really illusions
Central-peripheral dichotomy in vision: its motivation and predictions (such as in visual illusions)
A model of colour appearance based on efficient coding of natural images
An object’s colour, brightness and pattern are all influenced by its surroundings, and a number of visual phenomena and “illusions” have been discovered that highlight these often dramatic effects. Explanations for these phenomena range from low-level neural mechanisms to high-level processes that incorporate contextual information or prior knowledge. Importantly, few of these phenomena can currently be accounted for when measuring an object’s perceived colour. Here we ask to what extent colour appearance is predicted by a model based on the principle of coding efficiency. The model assumes that the image is encoded by noisy spatio-chromatic filters at one octave separations, which are either circularly symmetrical or oriented. Each spatial band’s lower threshold is set by the contrast sensitivity function, and the dynamic range of the band is a fixed multiple of this threshold, above which the response saturates. Filter outputs are then reweighted to give equal power in each channel for natural images. We demonstrate that the model fits human behavioural performance in psychophysics experiments, and also primate retinal ganglion responses. Next we systematically test the model’s ability to qualitatively predict over 35 brightness and colour phenomena, with almost complete success. This implies that contrary to high-level processing explanations, much of colour appearance is potentially attributable to simple mechanisms evolved for efficient coding of natural images, and is a basis for modelling the vision of humans and other animals.
How vision succeeds in a hidden world
Feedforward and feedback processes in visual recognition
Progress in deep learning has spawned great successes in many engineering applications. As a prime example, convolutional neural networks, a type of feedforward neural networks, are now approaching – and sometimes even surpassing – human accuracy on a variety of visual recognition tasks. In this talk, however, I will show that these neural networks and their recent extensions exhibit a limited ability to solve seemingly simple visual reasoning problems involving incremental grouping, similarity, and spatial relation judgments. Our group has developed a recurrent network model of classical and extra-classical receptive field circuits that is constrained by the anatomy and physiology of the visual cortex. The model was shown to account for diverse visual illusions providing computational evidence for a novel canonical circuit that is shared across visual modalities. I will show that this computational neuroscience model can be turned into a modern end-to-end trainable deep recurrent network architecture that addresses some of the shortcomings exhibited by state-of-the-art feedforward networks for solving complex visual reasoning tasks. This suggests that neuroscience may contribute powerful new ideas and approaches to computer science and artificial intelligence.
From natural scene statistics to multisensory integration: experiments, models and applications
To efficiently process sensory information, the brain relies on statistical regularities in the input. While generally improving the reliability of sensory estimates, this strategy also induces perceptual illusions that help reveal the underlying computational principles. Focusing on auditory and visual perception, in my talk I will describe how the brain exploits statistical regularities within and across the senses for the perception space, time and multisensory integration. In particular, I will show how results from a series of psychophysical experiments can be interpreted in the light of Bayesian Decision Theory, and I will demonstrate how such canonical computations can be implemented into simple and biologically plausible neural circuits. Finally, I will show how such principles of sensory information processing can be leveraged in virtual and augmented reality to overcome display limitations and expand human perception.
Face Pareidolia: biases and the brain
Individual differences in visual (mis)perception: a multivariate statistical approach
Common factors are omnipresent in everyday life, e.g., it is widely held that there is a common factor g for intelligence. In vision, however, there seems to be a multitude of specific factors rather than a strong and unique common factor. In my thesis, I first examined the multidimensionality of the structure underlying visual illusions. To this aim, the susceptibility to various visual illusions was measured. In addition, subjects were tested with variants of the same illusion, which differed in spatial features, luminance, orientation, or contextual conditions. Only weak correlations were observed between the susceptibility to different visual illusions. An individual showing a strong susceptibility to one visual illusion does not necessarily show a strong susceptibility to other visual illusions, suggesting that the structure underlying visual illusions is multifactorial. In contrast, there were strong correlations between the susceptibility to variants of the same illusion. Hence, factors seem to be illusion-specific but not feature-specific. Second, I investigated whether a strong visual factor emerges in healthy elderly and patients with schizophrenia, which may be expected from the general decline in perceptual abilities usually reported in these two populations compared to healthy young adults. Similarly, a strong visual factor may emerge in action video gamers, who often show enhanced perceptual performance compared to non-video gamers. Hence, healthy elderly, patients with schizophrenia, and action video gamers were tested with a battery of visual tasks, such as a contrast detection and orientation discrimination task. As in control groups, between-task correlations were weak in general, which argues against the emergence of a strong common factor for vision in these populations. While similar tasks are usually assumed to rely on similar neural mechanisms, the performances in different visual tasks were only weakly related to each other, i.e., performance does not generalize across visual tasks. These results highlight the relevance of an individual differences approach to unravel the multidimensionality of the visual structure.
The role of motion in localizing objects
Everything we see has a location. We know where things are before we know what they are. But how do we know where things are? Receptive fields in the visual system specify location but neural delays lead to serious errors whenever targets or eyes are moving. Motion may be the problem here but motion can also be the solution, correcting for the effects of delays and eye movements. To demonstrate this, I will present results from three motion illusions where perceived location differs radically from physical location. These help understand how and where position is coded. We first look at the effects of a target’s simple forward motion on its perceived location. Second, we look at perceived location of a target that has internal motion as well as forward motion. The two directions combine to produce an illusory path. This “double-drift” illusion strongly affects perceived position but, surprisingly, not eye movements or attention. Even more surprising, fMRI shows that the shifted percept does not emerge in the visual cortex but is seen instead in the frontal lobes. Finally, we report that a moving frame also shifts the perceived positions of dots flashed within it. Participants report the dot positions relative to the frame, as if the frame were not moving. These frame-induced position effects suggest a link to visual stability where we see a steady world despite massive displacements during saccades. These motion-based effects on perceived location lead to new insights concerning how and where position is coded in the brain.
Can subjective experience be quantified? Critically examining computational cognitive neuroscience approaches
Computational and cognitive neuroscience techniques have made great strides towards describing the neural computations underlying perceptual inference and decision-making under uncertainty. These tools tell us how and why perceptual illusions occur, which brain areas may represent noisy information in a probabilistic manner, and so on. However, an understanding of the subjective, qualitative aspects of perception remains elusive: qualia, or the personal, intrinsic properties of phenomenal awareness, have remained out of reach of these computational analytic insights. Here, I propose that metacognitive computations, and the subjective feelings that go along with them, give us a solid starting point for understanding subjective experience in general. Specifically, perceptual metacognition possesses ontological and practical properties that provide a powerful and unique opportunity for studying the studying the neural and computational correlates of subjective experience using established tools of computational and cognitive neuroscience. By capitalizing on decades of developments in formal computational model comparisons as applied to the specific properties of perceptual metacognition, we are now in a privileged position to reveal new and exciting insights about how the brain constructs our subjective conscious experiences.
Time perception: how our judgment of time is influenced by the regularity and change in stimulus distribution?
To organize various experiences in a coherent mental representation, we need to properly estimate the duration and temporal order of different events. Yet, our perception of time is noisy and vulnerable to various illusions. Studying these illusions can elucidate the mechanism by which the brain perceives time. In this talk, I will review a few studies on how the brain perceives duration of events and the temporal order between self-generated motion and sensory feedback. Combined with computational models at different levels, these experiments illustrated that the brain incorporates the prior knowledge of the statistical distribution of the duration of stimuli and the decay of memory when estimating duration of an individual event, and adjusts its perception of temporal order to changes in the statistics of the environment.
A new computational framework for understanding vision in our brain
Visual attention selects only a tiny fraction of visual input information for further processing. Selection starts in the primary visual cortex (V1), which creates a bottom-up saliency map to guide the fovea to selected visual locations via gaze shifts. This motivates a new framework that views vision as consisting of encoding, selection, and decoding stages, placing selection on center stage. It suggests a massive loss of non-selected information from V1 downstream along the visual pathway. Hence, feedback from downstream visual cortical areas to V1 for better decoding (recognition), through analysis-by- synthesis, should query for additional information and be mainly directed at the foveal region. Accordingly, non-foveal vision is not only poorer in spatial resolution, but also more susceptible to many illusions.