← Back

Imagination

Topic spotlight
TopicWorld Wide

imagination

Discover seminars, jobs, and research tagged with imagination across World Wide.
9 curated items8 Seminars1 ePoster
Updated almost 2 years ago
9 items · imagination
9 results
SeminarNeuroscience

How do our thoughts, imaginations and intentions influence sleep?

Björn Rasch
University of Fribourg, Switzerland
Jan 28, 2024
SeminarNeuroscience

NEW TREATMENTS FOR PAIN: Unmet needs and how to meet them

Multiple speakers
Nov 8, 2022

“Of pain you could wish only one thing: that it should stop. Nothing in the world was so bad as physical pain. In the face of pain there are no heroes.- George Orwell, ‘1984’ " "Neuroscience has revealed the secrets of the brain and nervous system to an extent that was beyond the realm of imagination just 10-20 years ago, let alone in 1949 when Orwell wrote his prophetic novel. Understanding pain, however, presents a unique challenge to academia, industry and medicine, being both a measurable physiological process as well as deeply personal and subjective. Given the millions of people who suffer from pain every day, wishing only, “that it should stop”, the need to find more effective treatments cannot be understated." "‘New treatments for pain’ will bring together approximately 120 people from the commercial, academic, and not-for-profit sectors to share current knowledge, identify future directions, and enable collaboration, providing delegates with meaningful and practical ways to accelerate their own work into developing treatments for pain.

SeminarNeuroscienceRecording

Food, taste, and the role of the cortical laminar in action and imagination

Alex Martin
NIMH
Nov 1, 2022
SeminarPhysics of LifeRecording

Towards model-based control of active matter: active nematics and oscillator networks

Michael Norton
Rochester Institute of Technology
Jan 30, 2022

The richness of active matter's spatiotemporal patterns continues to capture our imagination. Shaping these emergent dynamics into pre-determined forms of our choosing is a grand challenge in the field. To complicate matters, multiple dynamical attractors can coexist in such systems, leading to initial condition-dependent dynamics. Consequently, non-trivial spatiotemporal inputs are generally needed to access these states. Optimal control theory provides a general framework for identifying such inputs and represents a promising computational tool for guiding experiments and interacting with various systems in soft active matter and biology. As an exemplar, I first consider an extensile active nematic fluid confined to a disk. In the absence of control, the system produces two topological defects that perpetually circulate. Optimal control identifies a time-varying active stress field that restructures the director field, flipping the system to its other attractor that rotates in the opposite direction. As a second, analogous case, I examine a small network of coupled Belousov-Zhabotinsky chemical oscillators that possesses two dominant attractors, two wave states of opposing chirality. Optimal control similarly achieves the task of attractor switching. I conclude with a few forward-looking remarks on how the same model-based control approach might come to bear on problems in biology.

SeminarNeuroscienceRecording

NMC4 Short Talk: Sensory intermixing of mental imagery and perception

Nadine Dijkstra
Wellcome Centre for Human Neuroimaging
Dec 1, 2021

Several lines of research have demonstrated that internally generated sensory experience - such as during memory, dreaming and mental imagery - activates similar neural representations as externally triggered perception. This overlap raises a fundamental challenge: how is the brain able to keep apart signals reflecting imagination and reality? In a series of online psychophysics experiments combined with computational modelling, we investigated to what extent imagination and perception are confused when the same content is simultaneously imagined and perceived. We found that simultaneous congruent mental imagery consistently led to an increase in perceptual presence responses, and that congruent perceptual presence responses were in turn associated with a more vivid imagery experience. Our findings can be best explained by a simple signal detection model in which imagined and perceived signals are added together. Perceptual reality monitoring can then easily be implemented by evaluating whether this intermixed signal is strong or vivid enough to pass a ‘reality threshold’. Our model suggests that, in contrast to self-generated sensory changes during movement, our brain does not discount self-generated sensory signals during mental imagery. This has profound implications for our understanding of reality monitoring and perception in general.

SeminarOpen SourceRecording

Get more from your ISH brain slices with Stalefish

Seb James
Department of Psychology, The University of Sheffield
Oct 12, 2021

The standard method for staining structures in the brain is to slice the brain into 2D sections. Each slice is treated using a technique such as in-situ hybridization to examine the spatial expression of a particular molecule at a given developmental timepoint. Depending on the brain structures being studied, slices can be made coronally, sagitally, or at any angle that is thought to be optimal for analysis. However, assimilating the information presented in the 2D slice images to gain quantitiative and informative 3D expression patterns is challenging. Even if expression levels are presented as voxels, to give 3D expression clouds, it can be difficult to compare expression across individuals and analysing such data requires significant expertise and imagination. In this talk, I will describe a new approach to examining histology slices, in which the user defines the brain structure of interest by drawing curves around it on each slice in a set and the depth of tissue from which to sample expression. The sampled 'curves' are then assembled into a 3D surface, which can then be transformed onto a common reference frame for comparative analysis. I will show how other neuroscientists can obtain and use the tool, which is called Stalefish, to analyse their own image data with no (or minimal) changes to their slice preparation workflow.

SeminarNeuroscienceRecording

Exploring the neural landscape of imagination and abstract spaces

Daniela Schiller
Mount Sinai
Apr 22, 2021

External cues imbued with significance can enhance the motivational state of an organism, trigger related memories and influence future planning and goal directed behavior. At the same time, internal thought and imaginings can moderate and counteract the impact of external motivational cues. The neural underpinnings of imagination have been largely opaque, due to the inherent inaccessibility of mental actions. The talk will describe studies utilizing imagination and tracking how its neural correlates bidirectionally interact with external motivational cues. Stimulus-response associative learning is only one form of memory organization. A more comprehensive and efficient organizational principal is the cognitive map. In the last part of the talk we will examine this concept in the case of abstract memories and social space. Social encounters provide opportunities to become intimate or estranged from others and to gain or lose power over them. The locations of others on the axes of power and affiliation can serve as reference points for our own position in the social space. Research is beginning to uncover the spatial-like neural representation of these social coordinates. We will discuss recent and growing evidence on utilizing the principals of the cognitive map across multiple domains, providing a systematic way of organizing memories to navigate life.

SeminarNeuroscienceRecording

Mental Simulation, Imagination, and Model-Based Deep RL

Jessica Hamrick
Deepmind
Apr 8, 2021

Mental simulation—the capacity to imagine what will or what could be—is a salient feature of human cognition, playing a key role in a wide range of cognitive abilities. In artificial intelligence, the last few years have seen the development of methods which are analogous to mental models and mental simulation. In this talk, I will discuss recent methods in deep learning for constructing such models from data and learning to use them via reinforcement learning, and compare such approaches to human mental simulation. While a number of challenges remain in matching the capacity of human mental simulation, I will highlight some recent progress on developing more compositional and efficient model-based algorithms through the use of graph neural networks and tree search.

ePoster

Blurring the line between imagination and reality: Motor imagery influences performance of linked movements

Magdalena Gippert, Pei-Cheng Shih, Tobias Heed, Ian Howard, Mina Jamshidi, Arno Villringer, Bernhard Sehm, Vadim Nikulin

FENS Forum 2024