← Back

Imaging Studies

Topic spotlight
TopicWorld Wide

imaging studies

Discover seminars, jobs, and research tagged with imaging studies across World Wide.
16 curated items16 Seminars
Updated 5 months ago
16 items · imaging studies
16 results
SeminarNeuroscience

Non-invasive human neuroimaging studies of motor plasticity have predominantly focused on the cerebral cortex due to low signal-to-noise ration of blood oxygen level-dependent (BOLD) signals in subcortical structures and the small effect sizes typically observed in plasticity paradigms. Precision functional mapping can help overcome these challenges and has revealed significant and reversible functional alterations in the cortico-subcortical motor circuit during arm immobilization

Dr. Roselyne Chauvin
Washington University, St. Louis, USA
Jul 8, 2025
SeminarNeuroscience

Navigating semantic spaces: recycling the brain GPS for higher-level cognition

Manuela Piazza
University of Trento, Italy
May 27, 2024

Humans share with other animals a complex neuronal machinery that evolved to support navigation in the physical space and that supports wayfinding and path integration. In my talk I will present a series of recent neuroimaging studies in humans performed in my Lab aimed at investigating the idea that this same neural navigation system (the “brain GPS”) is also used to organize and navigate concepts and memories, and that abstract and spatial representations rely on a common neural fabric. I will argue that this might represent a novel example of “cortical recycling”, where the neuronal machinery that primarily evolved, in lower level animals, to represent relationships between spatial locations and navigate space, in humans are reused to encode relationships between concepts in an internal abstract representational space of meaning.

SeminarNeuroscience

How curiosity affects learning and information seeking via the dopaminergic circuit

Matthias J. Gruber
Cardiff University, UK
Jun 12, 2023

Over the last decade, research on curiosity – the desire to seek new information – has been rapidly growing. Several studies have shown that curiosity elicits activity within the dopaminergic circuit and thereby enhances hippocampus-dependent learning. However, given this new field of research, we do not have a good understanding yet of (i) how curiosity-based learning changes across the lifespan, (ii) why some people show better learning improvements due to curiosity than others, and (iii) whether lab-based research on curiosity translates to how curiosity affects information seeking in real life. In this talk, I will present a series of behavioural and neuroimaging studies that address these three questions about curiosity. First, I will present findings on how curiosity and interest affect learning differently in childhood and adolescence. Second, I will show data on how inter-individual differences in the magnitude of curiosity-based learning depend on the strength of resting-state functional connectivity within the cortico-mesolimbic dopaminergic circuit. Third, I will present findings on how the level of resting-state functional connectivity within this circuit is also associated with the frequency of real-life information seeking (i.e., about Covid-19-related news). Together, our findings help to refine our recently proposed framework – the Prediction, Appraisal, Curiosity, and Exploration (PACE) framework – that attempts to integrate theoretical ideas on the neurocognitive mechanisms of how curiosity is elicited, and how curiosity enhances learning and information seeking. Furthermore, our findings highlight the importance of curiosity research to better understand how curiosity can be harnessed to improve learning and information seeking in real life.

SeminarNeuroscienceRecording

A sense without sensors: how non-temporal stimulus features influence the perception and the neural representation of time

Domenica Bueti
SISSA, Trieste (Italy)
Apr 18, 2023

Any sensory experience of the world, from the touch of a caress to the smile on our friend’s face, is embedded in time and it is often associated with the perception of the flow of it. The perception of time is therefore a peculiar sensory experience built without dedicated sensors. How the perception of time and the content of a sensory experience interact to give rise to this unique percept is unclear. A few empirical evidences show the existence of this interaction, for example the speed of a moving object or the number of items displayed on a computer screen can bias the perceived duration of those objects. However, to what extent the coding of time is embedded within the coding of the stimulus itself, is sustained by the activity of the same or distinct neural populations and subserved by similar or distinct neural mechanisms is far from clear. Addressing these puzzles represents a way to gain insight on the mechanism(s) through which the brain represents the passage of time. In my talk I will present behavioral and neuroimaging studies to show how concurrent changes of visual stimulus duration, speed, visual contrast and numerosity, shape and modulate brain’s and pupil’s responses and, in case of numerosity and time, influence the topographic organization of these features along the cortical visual hierarchy.

SeminarNeuroscience

Dynamic endocrine modulation of the nervous system

Emily Jabocs
US Santa Barbara Neuroscience
Apr 17, 2023

Sex hormones are powerful neuromodulators of learning and memory. In rodents and nonhuman primates estrogen and progesterone influence the central nervous system across a range of spatiotemporal scales. Yet, their influence on the structural and functional architecture of the human brain is largely unknown. Here, I highlight findings from a series of dense-sampling neuroimaging studies from my laboratory designed to probe the dynamic interplay between the nervous and endocrine systems. Individuals underwent brain imaging and venipuncture every 12-24 hours for 30 consecutive days. These procedures were carried out under freely cycling conditions and again under a pharmacological regimen that chronically suppresses sex hormone production. First, resting state fMRI evidence suggests that transient increases in estrogen drive robust increases in functional connectivity across the brain. Time-lagged methods from dynamical systems analysis further reveals that these transient changes in estrogen enhance within-network integration (i.e. global efficiency) in several large-scale brain networks, particularly Default Mode and Dorsal Attention Networks. Next, using high-resolution hippocampal subfield imaging, we found that intrinsic hormone fluctuations and exogenous hormone manipulations can rapidly and dynamically shape medial temporal lobe morphology. Together, these findings suggest that neuroendocrine factors influence the brain over short and protracted timescales.

SeminarNeuroscience

Flexible multitask computation in recurrent networks utilizes shared dynamical motifs

Laura Driscoll
Stanford University
Aug 24, 2022

Flexible computation is a hallmark of intelligent behavior. Yet, little is known about how neural networks contextually reconfigure for different computations. Humans are able to perform a new task without extensive training, presumably through the composition of elementary processes that were previously learned. Cognitive scientists have long hypothesized the possibility of a compositional neural code, where complex neural computations are made up of constituent components; however, the neural substrate underlying this structure remains elusive in biological and artificial neural networks. Here we identified an algorithmic neural substrate for compositional computation through the study of multitasking artificial recurrent neural networks. Dynamical systems analyses of networks revealed learned computational strategies that mirrored the modular subtask structure of the task-set used for training. Dynamical motifs such as attractors, decision boundaries and rotations were reused across different task computations. For example, tasks that required memory of a continuous circular variable repurposed the same ring attractor. We show that dynamical motifs are implemented by clusters of units and are reused across different contexts, allowing for flexibility and generalization of previously learned computation. Lesioning these clusters resulted in modular effects on network performance: a lesion that destroyed one dynamical motif only minimally perturbed the structure of other dynamical motifs. Finally, modular dynamical motifs could be reconfigured for fast transfer learning. After slow initial learning of dynamical motifs, a subsequent faster stage of learning reconfigured motifs to perform novel tasks. This work contributes to a more fundamental understanding of compositional computation underlying flexible general intelligence in neural systems. We present a conceptual framework that establishes dynamical motifs as a fundamental unit of computation, intermediate between the neuron and the network. As more whole brain imaging studies record neural activity from multiple specialized systems simultaneously, the framework of dynamical motifs will guide questions about specialization and generalization across brain regions.

SeminarNeuroscience

Visualising time in the human brain

Jennifer Coull
LNC, Aix, Marseille Université & CNRS
May 16, 2022

We all have a sense of time. Yet it is a particularly intangible sensation. So how is our “sense” of time represented in the brain? Functional neuroimaging studies have consistently identified a network of regions, including Supplementary Motor Area and basal ganglia, that are activated when participants make judgements about the duration of currently unfolding events. In parallel, left parietal cortex and cerebellum are activated when participants predict when future events are likely to occur. These structures are activated by temporal processing even when task goals are purely perceptual. So why should the perception of time be represented in regions of the brain that have more traditionally been implicated in motor function? One possibility is that we learn about time through action. In other words, action could provide the functional scaffolding for learning about time in childhood, explaining why it has come to be represented in motor circuits of the adult brain.

SeminarOpen SourceRecording

ReproNim: Towards a culture of more reproducible neuroimaging research

David N. Kennedy, PhD
University of Massachusetts Medical School
Nov 9, 2021

Given the intrinsically large and complex data sets collected in neuroimaging research, coupled with the extensive array of shared data and tools amassed in the research community, ReproNim seeks to lower the barriers for efficient: use of data; description of data and process; use of standards and best practices; sharing; and subsequent reuse of the collective ‘big’ data. Aggregation of data and reuse of analytic methods have become critical in addressing concerns about the replicability and power of many of today’s neuroimaging studies.

SeminarNeuroscienceRecording

Neuronal and Vascular Dysfunction in Optic Neuropathies: New Insights from Live Imaging Studies

Adriana Di Polo
Universite de Montreal
Jun 7, 2021
SeminarPsychology

The contribution of the dorsal visual pathway to perception and action

Erez Freud
York University
Apr 28, 2021

The human visual system enables us to recognize objects (e.g., this is a cup) and act upon them (e.g., grasp the cup) with astonishing ease and accuracy. For decades, it was widely accepted that these different functions rely on two separated cortical pathways. The ventral occipitotemporal pathway subserves object recognition, while the dorsal occipitoparietal pathway promotes visually guided actions. In my talk, I will discuss recent evidence from a series of neuropsychological, developmental and neuroimaging studies that were aimed to explore the nature of object representations in the dorsal pathway. The results from these studies highlight the plausible role of the dorsal pathway in object perception and reveal an interplay between shape representations derived by the two pathways. Together, these findings challenge the binary distinction between the two pathways and are consistent with the view that object recognition is not the sole product of ventral pathway computations, but instead relies on a distributed network of regions.

SeminarNeuroscience

Life of Pain and Pleasure

Irene Tracey
University of Oxford
Mar 9, 2021

The ability to experience pain is old in evolutionary terms. It is an experience shared across species. Acute pain is the body’s alarm system, and as such it is a good thing. Pain that persists beyond normal tissue healing time (3-4 months) is defined as chronic – it is the system gone wrong and it is not a good thing. Chronic pain has recently been classified as both a symptom and disease in its own right. It is one of the largest medical health problems worldwide with one in five adults diagnosed with the condition. The brain is key to the experience of pain and pain relief. This is the place where pain emerges as a perception. So, relating specific brain measures using advanced neuroimaging to the change patients describe in their pain perception induced by peripheral or central sensitization (i.e. amplification), psychological or pharmacological mechanisms has tremendous value. Identifying where amplification or attenuation processes occur along the journey from injury to the brain (i.e. peripheral nerves, spinal cord, brainstem and brain) for an individual and relating these neural mechanisms to specific pain experiences, measures of pain relief, persistence of pain states, degree of injury and the subject's underlying genetics, has neuroscientific and potential diagnostic relevance. This is what neuroimaging has afforded – a better understanding and explanation of why someone’s pain is the way it is. We can go ‘behind the scenes’ of the subjective report to find out what key changes and mechanisms make up an individual’s particular pain experience. A key area of development has been pharmacological imaging where objective evidence of drugs reaching the target and working can be obtained. We even now understand the mechanisms of placebo analgesia – a powerful phenomenon known about for millennia. More recently, researchers have been investigating through brain imaging whether there is a pre-disposing vulnerability in brain networks towards developing chronic pain. So, advanced neuroimaging studies can powerfully aid explanation of a subject’s multidimensional pain experience, pain relief (analgesia) and even what makes them vulnerable to developing chronic pain. The application of this goes beyond the clinic and has relevance in courts of law, and other areas of society, such as in veterinary care. Relatively far less work has been directed at understanding what changes in the brain occur during altered states of consciousness induced either endogenously (e.g. sleep) or exogenously (e.g. anaesthesia). However, that situation is changing rapidly. Our recent multimodal neuroimaging work explores how anaesthetic agents produce altered states of consciousness such that perceptual experiences of pain and awareness are degraded. This is bringing us fascinating insights into the complex phenomenon of anaesthesia, consciousness and even the concept of self-hood. These topics will be discussed in my talk alongside my ‘side-story’ of life as a scientist combining academic leadership roles with doing science and raising a family.

SeminarNeuroscience

Multimodal brain imaging to predict progression of Alzheimer’s disease

Karl Herholz
University of Manchester, Division of Neuroscience and Experimental Psychology
Dec 6, 2020

Cross-sectional and longitudinal multimodal brain imaging studies using positron emission tomography (PET) and magnetic resonance imaging (MRI) have provided detailed insight into the pathophysiological progression of Alzheimer’s disease. It starts at an asymptomatic stage with widespread gradual accumulation of beta-amyloid and spread of pathological tau deposits. Subsequently changes of functional connectivity and glucose metabolism associated with mild cognitive impairment and brain atrophy may develop. However, the rate of progression to a symptomatic stage and ultimately dementia varies considerably between individuals. Mathematical models have been developed to describe disease progression, which may be used to identify markers that determine the current stage and likely rate of progression. Both are very important to improve the efficacy of clinical trials. In this lecture, I will provide an overview on current research and future perspectives in this area.

SeminarNeuroscienceRecording

Cortical estimation of current and future bodily states

Yoav Livneh
Weizmann Institute of Science
Nov 1, 2020

Interoception, the sense of internal bodily signals, is essential for physiological homeostasis, cognition, and emotions. Human neuroimaging studies suggest insular cortex plays a central role in interoception, yet the cellular and circuit mechanisms of its involvement remain unclear. We developed a microprism-based cellular imaging approach to monitor insular cortex activity in behaving mice across different physiological need states. We combine this imaging approach with manipulations of peripheral physiology, circuit-mapping, cell type-specific and circuit-specific manipulation approaches to investigate the underlying circuit mechanisms. I will present our recent data investigating insular cortex activity during two physiological need states – hunger and thirst. These wereinduced naturally by caloric/fluid deficiency, or artificially by activation of specific hypothalamic “hunger neurons” and “thirst neurons”. We found that insular cortex ongoing activity faithfully represents current physiological state, independently of behavior or arousal levels. In contrast, transient responses to learned food- or water-predicting cues reflect a population-level “simulation” of future predicted satiety. Together with additional circuit-mapping and manipulation experiments, our findings suggest that insular cortex integrates visceral-sensory inputs regarding current physiological state with hypothalamus-gated amygdala inputs signaling availability of food/water. This way, insular cortex computes a prediction of future physiological state that can be used to guide behavioral choice.

SeminarNeuroscienceRecording

Neuroimaging in human drug addiction: an eye towards intervention development

Rita Goldstein
Mount Sinai
Sep 1, 2020

Drug addiction is a chronically relapsing disorder characterized by compulsive drug use despite catastrophic personal consequences (e.g., loss of family, job) and even when the substance is no longer perceived as pleasurable. In this talk, I will present results of human neuroimaging studies, utilizing a multimodal approach (neuropsychology, functional magnetic resonance imaging, event-related potentials recordings), to explore the neurobiology underlying the core psychological impairments in drug addiction (impulsivity, drive/motivation, insight/awareness) as associated with its clinical symptomatology (intoxication, craving, bingeing, withdrawal). The focus of this talk is on understanding the role of the dopaminergic mesocorticolimbic circuit, and especially the prefrontal cortex, in higher-order executive dysfunction (e.g., disadvantageous decision-making such as trading a car for a couple of cocaine hits) in drug addicted individuals. The theoretical model that guides the presented research is called iRISA (Impaired Response Inhibition and Salience Attribution), postulating that abnormalities in the orbitofrontal cortex and anterior cingulate cortex, as related to dopaminergic dysfunction, contribute to the core clinical symptoms in drug addiction. Specifically, our multi-modality program of research is guided by the underlying working hypothesis that drug addicted individuals disproportionately attribute reward value to their drug of choice at the expense of other potentially but no-longer-rewarding stimuli, with a concomitant decrease in the ability to inhibit maladaptive drug use. In this talk I will also explore whether treatment (as usual) and 6-month abstinence enhance recovery in these brain-behavior compromises in treatment seeking cocaine addicted individuals. Promising neuroimaging studies, which combine pharmacological (i.e., oral methylphenidate, or RitalinTM) and salient cognitive tasks or functional connectivity during resting-state, will be discussed as examples for using neuroimaging for empirically guiding the development of effective neurorehabilitation strategies (encompassing cognitive reappraisal and transcranial direct current stimulation) in drug addiction.