Imaging System
imaging system
The SIMple microscope: Development of a fibre-based platform for accessible SIM imaging in unconventional environments
Advancements in imaging speed, depth and resolution have made structured illumination microscopy (SIM) an increasingly powerful optical sectioning (OS) and super-resolution (SR) technique, but these developments remain inaccessible to many life science researchers due to the cost, optical complexity and delicacy of these instruments. We address these limitations by redesigning the optical path using in-line fibre components that are compact, lightweight and easily assembled in a “Plug & Play” modality, without compromising imaging performance. They can be integrated into an existing widefield microscope with a minimum of optical components and alignment, making OS-SIM more accessible to researchers with less optics experience. We also demonstrate a complete SR-SIM imaging system with dimensions 300 mm × 300 mm × 450 mm. We propose to enable accessible SIM imaging by utilising its compact, lightweight and robust design to transport it where it is needed, and image in “unconventional” environments where factors such as temperature and biosafety considerations currently limit imaging experiments.
Computational Imaging: Augmenting Optics with Algorithms for Biomedical Microscopy and Neural Imaging
Computational imaging seeks to achieve novel capabilities and overcome conventional limitations by combining optics and algorithms. In this seminar, I will discuss two computational imaging technologies developed in Boston University Computational Imaging Systems lab, including Intensity Diffraction Tomography and Computational Miniature Mesoscope. In our intensity diffraction tomography system, we demonstrate 3D quantitative phase imaging on a simple LED array microscope. We develop both single-scattering and multiple-scattering models to image complex biological samples. In our Computational Miniature Mesoscope, we demonstrate single-shot 3D high-resolution fluorescence imaging across a wide field-of-view in a miniaturized platform. We develop methods to characterize 3D spatially varying aberrations and physical simulator-based deep learning strategies to achieve fast and accurate reconstructions. Broadly, I will discuss how synergies between novel optical instrumentation, physical modeling, and model- and learning-based computational algorithms can push the limits in biomedical microscopy and neural imaging.
A Panoramic View on Vision
Statistics of natural scenes are not uniform - their structure varies dramatically from ground to sky. It remains unknown whether these non-uniformities are reflected in the large-scale organization of the early visual system and what benefits such adaptations would confer. By deploying an efficient coding argument, we predict that changes in the structure of receptive fields across visual space increase the efficiency of sensory coding. To test this experimentally, developed a simple, novel imaging system that is indispensable for studies at this scale. In agreement with our predictions, we could show that receptive fields of retinal ganglion cells change their shape along the dorsoventral axis, with a marked surround asymmetry at the visual horizon. Our work demonstrates that, according to principles of efficient coding, the panoramic structure of natural scenes is exploited by the retina across space and cell-types.