Immune Responses
immune responses
Neuroinflammation in Epilepsy: what have we learned from human brain tissue specimens ?
Epileptogenesis is a gradual and dynamic process leading to difficult-to-treat seizures. Several cellular, molecular, and pathophysiologic mechanisms, including the activation of inflammatory processes. The use of human brain tissue represents a crucial strategy to advance our understanding of the underlying neuropathology and the molecular and cellular basis of epilepsy and related cognitive and behavioral comorbidities, The mounting evidence obtained during the past decade has emphasized the critical role of inflammation in the pathophysiological processes implicated in a large spectrum of genetic and acquired forms of focal epilepsies. Dissecting the cellular and molecular mediators of the pathological immune responses and their convergent and divergent mechanisms, is a major requisite for delineating their role in the establishment of epileptogenic networks. The role of small regulatory molecules involved in the regulation of specific pro- and anti-inflammatory pathways and the crosstalk between neuroinflammation and oxidative stress will be addressed. The observations supporting the activation of both innate and adaptive immune responses in human focal epilepsy will be discussed and elaborated, highlighting specific inflammatory pathways as potential targets for antiepileptic, disease-modifying therapeutic strategies.
Identification of dendritic cell-T cell interactions driving immune responses to food
Inflammation and Pregancy
Talk(1): Fetal and maternal NLRP3 signaling is required for preterm labor and birth. (DOI: 10.1172/jci.insight.158238) Talk(2): Maternal IL-33 critically regulates tissue remodeling and type 2 immune responses in the uterus during early pregnancy in mice (DOI: 10.1073/pnas.2123267119)
Remembering immunity: Neuronal representation of immune responses
Accumulating data indicate that the brain can affect immunity, as evidenced, for example, by the effects of stress, stroke, and reward system activity on the peripheral immune system. However, our understanding of this neuroimmune interaction is still limited. Importantly, we do not know how the brain evaluates and represents the state of the immune system. In this talk, I will present our latest study from our lab, designed to test the existence of immune-related information in the brain and determine its relevance to immune regulation. We hypothesized that the InsCtx, specifically the posterior InsCtx (as a primary cortical site of interoception in the brain), is especially suited to contain such a representation of the immune system. Using activity-dependent cell labeling in mice (FosTRAP), we captured neuronal ensembles in the InsCtx that were active under two different inflammatory conditions (dextran sulfate sodium [DSS]-induced colitis and zymosan-induced peritonitis). Chemogenetic reactivation of these neuronal ensembles was sufficient to broadly retrieve the inflammatory state under which these neurons were captured. Moreover, using retrograde neuronal tracing, we found an anatomical efferent pathway linking these InsCtx neurons to the inflamed peripheral sites. Taken together, we show that the brain can store and retrieve specific immune responses, extending the classical concept of immunological memory to neuronal representations of inflammatory information.
Gene Therapy for Neurodegeneration
One of the major challenges in developing therapeutics for the neurodegenerative disorders is the blood-brain barrier, limiting the availability of systemically administered therapies such as recombinant proteins or monoclonal antibodies from reaching the brain. Direct central nervous system (CNS) gene therapy using adeno-associated virus vectors expressing a therapeutic protein, monoclonal antibody or inhibiting RNA-coding sequences has two characteristics ideal for therapy of neurodegenerative disorders: circumventing the blood-brain barrier by directly expressing the therapy in the brain and the ability to provide persistent therapy with only a single administration. There are several critical parameters relevant to successful CNS gene therapy, including choice of vector, design of the gene to be expressed, delivery/route of administration, dose and anti-vector immune responses. The presentation will focus on these issues, the current status of clinical trials of gene therapy for neurodegeneration and specific challenges that will need to be overcome to ensure the success of these therapies.
Characterization of peripheral and brain-specific innate immune responses in a murine model of NMDAR encephalitis
FENS Forum 2024
Dysregulation in microglia-related immune responses in cognitive impairment associated with Parkinson’s disease
FENS Forum 2024
Mapping neuronal ensemble of peripheral immune responses
FENS Forum 2024
Non-invasive sensory stimulation mitigates stress-induced neuroimmune responses in a sex- and frequency-specific manner
FENS Forum 2024
Social status impacts peripheral immune responses through synapse strength in prefrontal cortex
FENS Forum 2024