Topic spotlight
TopicWorld Wide

india

Discover seminars, jobs, and research tagged with india across World Wide.
20 curated items18 Seminars2 Positions
Updated 2 days ago
20 items · india
20 results
Position

Prof. (Dr.) Swagatam Das

Institute for Advancing Intelligence (IAI), TCG Centre for Research and Education in Science and Technology (CREST)
Kolkata, India
Dec 5, 2025

We are seeking highly qualified and motivated individuals for the positions of Assistant and Associate Professors in Artificial Intelligence (AI) and Machine Learning (ML). The successful candidate will join our esteemed faculty in the Institute for Advancing Intelligence (IAI), TCG Centre for Research and Education in Science and Technology (CREST), Kolkata, India, and contribute to our commitment to excellence in research, teaching, and academic services. TCG CREST has set up the campus in Sector V, Salt Lake City, Kolkata, India. State-of-the-art laboratories and research facilities for the individual Institutes, spacious classrooms and technology interventions for executing both off-line and on-line academic classes and programs, conference rooms, and other infrastructures provide the students and the faculty an ideal environment for creative exchanges and high-end research collaborations.

SeminarNeuroscienceRecording

Brain network communication: concepts, models and applications

Caio Seguin
Indiana University
Aug 23, 2023

Understanding communication and information processing in nervous systems is a central goal of neuroscience. Over the past two decades, advances in connectomics and network neuroscience have opened new avenues for investigating polysynaptic communication in complex brain networks. Recent work has brought into question the mainstay assumption that connectome signalling occurs exclusively via shortest paths, resulting in a sprawling constellation of alternative network communication models. This Review surveys the latest developments in models of brain network communication. We begin by drawing a conceptual link between the mathematics of graph theory and biological aspects of neural signalling such as transmission delays and metabolic cost. We organize key network communication models and measures into a taxonomy, aimed at helping researchers navigate the growing number of concepts and methods in the literature. The taxonomy highlights the pros, cons and interpretations of different conceptualizations of connectome signalling. We showcase the utility of network communication models as a flexible, interpretable and tractable framework to study brain function by reviewing prominent applications in basic, cognitive and clinical neurosciences. Finally, we provide recommendations to guide the future development, application and validation of network communication models.

SeminarNeuroscience

Freeze or flee ? New insights from rodent models of autism

Sumantra “Shona” Chattarji
Director, CHINTA, TCG Centres for Research and Education in Science & Technology, Kolkata, India & Visiting Professor, Simons Initiative for the Developing Brain, University of Edinburgh, UK
Jun 21, 2023

Individuals afflicted with certain types of autism spectrum disorder often exhibit impaired cognitive function alongside enhanced emotional symptoms and mood lability. However, current understanding of the pathogenesis of autism and intellectual disabilities is based primarily on studies in the hippocampus and cortex, brain areas involved in cognitive function. But, these disorders are also associated with strong emotional symptoms, which are likely to involve changes in the amygdala and other brain areas. In this talk I will highlight these issues by presenting analyses in rat models of ASD/ID lacking Nlgn3 and Frm1 (causing Fragile X Syndrome). In addition to identifying new circuit and cellular alterations underlying divergent patterns of fear expression, these findings also suggest novel therapeutic strategies.

SeminarNeuroscienceRecording

Vision Unveiled: Understanding Face Perception in Children Treated for Congenital Blindness

Sharon Gilad-Gutnick
MIT
Jun 19, 2023

Despite her still poor visual acuity and minimal visual experience, a 2-3 month old baby will reliably respond to facial expressions, smiling back at her caretaker or older sibling. But what if that same baby had been deprived of her early visual experience? Will she be able to appropriately respond to seemingly mundane interactions, such as a peer’s facial expression, if she begins seeing at the age of 10? My work is part of Project Prakash, a dual humanitarian/scientific mission to identify and treat curably blind children in India and then study how their brain learns to make sense of the visual world when their visual journey begins late in life. In my talk, I will give a brief overview of Project Prakash, and present findings from one of my primary lines of research: plasticity of face perception with late sight onset. Specifically, I will discuss a mixed methods effort to probe and explain the differential windows of plasticity that we find across different aspects of distributed face recognition, from distinguishing a face from a nonface early in the developmental trajectory, to recognizing facial expressions, identifying individuals, and even identifying one’s own caretaker. I will draw connections between our empirical findings and our recent theoretical work hypothesizing that children with late sight onset may suffer persistent face identification difficulties because of the unusual acuity progression they experience relative to typically developing infants. Finally, time permitting, I will point to potential implications of our findings in supporting newly-sighted children as they transition back into society and school, given that their needs and possibilities significantly change upon the introduction of vision into their lives.

SeminarNeuroscienceRecording

The development of visual experience

Linda Smith
Indiana University Bloomington
Jun 5, 2023

Vision and visual cognition is experience-dependent with likely multiple sensitive periods, but we know very little about statistics of visual experience at the scale of everyday life and how they might change with development. By traditional assumptions, the world at the massive scale of daily life presents pretty much the same visual statistics to all perceivers. I will present an overview our work on ego-centric vision showing that this is not the case. The momentary image received at the eye is spatially selective, dependent on the location, posture and behavior of the perceiver. If a perceiver’s location, possible postures and/or preferences for looking at some kinds of scenes over others are constrained, then their sampling of images from the world and thus the visual statistics at the scale of daily life could be biased. I will present evidence with respect to both low-level and higher level visual statistics about the developmental changes in the visual input over the first 18 months post-birth.

SeminarNeuroscienceRecording

Autopoiesis and Enaction in the Game of Life

Randall Beer
Indiana University
Mar 16, 2023

Enaction plays a central role in the broader fabric of so-called 4E (embodied, embedded, extended, enactive) cognition. Although the origin of the enactive approach is widely dated to the 1991 publication of the book "The Embodied Mind" by Varela, Thompson and Rosch, many of the central ideas trace to much earlier work. Over 40 years ago, the Chilean biologists Humberto Maturana and Francisco Varela put forward the notion of autopoiesis as a way to understand living systems and the phenomena that they generate, including cognition. Varela and others subsequently extended this framework to an enactive approach that places biological autonomy at the foundation of situated and embodied behavior and cognition. I will describe an attempt to place Maturana and Varela's original ideas on a firmer foundation by studying them within the context of a toy model universe, John Conway's Game of Life (GoL) cellular automata. This work has both pedagogical and theoretical goals. Simple concrete models provide an excellent vehicle for introducing some of the core concepts of autopoiesis and enaction and explaining how these concepts fit together into a broader whole. In addition, a careful analysis of such toy models can hone our intuitions about these concepts, probe their strengths and weaknesses, and move the entire enterprise in the direction of a more mathematically rigorous theory. In particular, I will identify the primitive processes that can occur in GoL, show how these can be linked together into mutually-supporting networks that underlie persistent bounded entities, map the responses of such entities to environmental perturbations, and investigate the paths of mutual perturbation that these entities and their environments can undergo.

SeminarNeuroscienceRecording

A framework for detecting noncoding rare variant associations of large-scale whole-genome sequencing studies

Zilin Li
Indiana University School of Medicine
Jan 9, 2023
SeminarNeuroscienceRecording

Social attention & emotion: invasive neurophysiology & white matter pathway studies

Aina Puce
Indiana University
Dec 19, 2022
SeminarNeuroscienceRecording

Time as its own representation? Exploring a link between timing of cognition and time perception

Ishan Singhal
Indian Institute of Technology, Kanpur
Sep 27, 2022

The way we represent and perceive time has crucial implications for studying temporality in conscious experience. Contrasting positions posit that temporal information is separately abstracted out like any other perceptual property, or that time is represented through representations having temporal properties themselves. To add to this debate, we investigated alterations in felt time in conditions where only conscious visual experience is altered while a bistable figure remains physically unchanged. In this talk, I will discuss two studies that we have done in relation to answering this question. In study 1, we investigated whether perceptual switches in fixed intervals altered felt time. In three experiments we showed that a break in visual experience (via a perceptual switch) also leads to a break in felt time. In study 2, we are currently looking at figure-ground perception in ambigous displays. Here, in experiment 1 we show that differences in flicker frequencies on ambigous regions can induce figure-ground segregation. To see if a reverse complementarity exists for felt time, we ask participants to view ambigous regions as figure/ground and show that they have different temporal resolutions for the same region based on whether it is seen as figure or background. Overall, the two studies provide evidence for temporal mirroring and isomorphism in visual experience, arguing for a link between the timing of experience and time perception.

SeminarNeuroscience

Mitochondria and Monoamines - Better Together

Vidita Vaidya
Tata Institute of Fundamental Research, India
Jul 4, 2022
SeminarNeuroscienceRecording

Acetylcholine modulation of short-term plasticity is critical to reliable long-term plasticity in hippocampal synapses

Rohan Sharma
Suhita lab, Indian Institute of Science Education and Research Pune
Jul 27, 2021

CA3-CA1 synapses in the hippocampus are the initial locus of episodic memory. The action of acetylcholine alters cellular excitability, modifies neuronal networks, and triggers secondary signaling that directly affects long-term plasticity (LTP) (the cellular underpinning of memory). It is therefore considered a critical regulator of learning and memory in the brain. Its action via M4 metabotropic receptors in the presynaptic terminal of the CA3 neurons and M1 metabotropic receptors in the postsynaptic spines of CA1 neurons produce rich dynamics across multiple timescales. We developed a model to describe the activation of postsynaptic M1 receptors that leads to IP3 production from membrane PIP2 molecules. The binding of IP3 to IP3 receptors in the endoplasmic reticulum (ER) ultimately causes calcium release. This calcium release from the ER activates potassium channels like the calcium-activated SK channels and alters different aspects of synaptic signaling. In an independent signaling cascade, M1 receptors also directly suppress SK channels and the voltage-activated KCNQ2/3 channels, enhancing post-synaptic excitability. In the CA3 presynaptic terminal, we model the reduction of the voltage sensitivity of voltage-gated calcium channels (VGCCs) and the resulting suppression of neurotransmitter release by the action of the M4 receptors. Our results show that the reduced initial release probability because of acetylcholine alters short-term plasticity (STP) dynamics. We characterize the dichotomy of suppressing neurotransmitter release from CA3 neurons and the enhanced excitability of the postsynaptic CA1 spine. Mechanisms underlying STP operate over a few seconds, while those responsible for LTP last for hours, and both forms of plasticity have been linked with very distinct functions in the brain. We show that the concurrent suppression of neurotransmitter release and increased sensitivity conserves neurotransmitter vesicles and enhances the reliability in plasticity. Our work establishes a relationship between STP and LTP coordinated by neuromodulation with acetylcholine.

SeminarNeuroscience

Brain Awareness Week by IIT Gandhinagar

Raghav Rajan, Anindya Ghosh Roy, Suvarna Alladi
Mar 14, 2021

The Brain Awareness Week by the Centre for Cognitive and Brain Sciences, IIT Gandhinagar spans across 7 days and invites you for a series of talks, panel discussions, competitions and workshops on topics ranging from 'Using songbirds to understand how the brain initiates movements' to 'Cognitive Science and UX in Game Design' by speakers from prestigious Indian and International institutes. Explore the marvels of the brain by joining us on 15th March. Free Registration.

SeminarNeuroscienceRecording

Context and Comparison During Open-Ended Induction

Robert Goldstone
Indiana University, Bloomington
Jan 20, 2021

A key component of humans' striking creativity in solving problems is our ability to construct novel descriptions to help us characterize novel categories. Bongard problems, which challenge the problem solver to come up with a rule for distinguishing visual scenes that fall into two categories, provide an elegant test of this ability. Bongard problems are challenging for both human and machine category learners because only a handful of example scenes are presented for each category, and they often require the open-ended creation of new descriptions. A new sub-type of Bongard problem called Physical Bongard Problems (PBPs) is introduced, which require solvers to perceive and predict the physical spatial dynamics implicit in the depicted scenes. The PATHS (Perceiving And Testing Hypotheses on Structures) computational model which can solve many PBPs is presented, and compared to human performance on the same problems. PATHS and humans are similarly affected by the ordering of scenes within a PBP, with spatially and temporally juxtaposed scenes promoting category learning when they are similar and belong to different categories, or dissimilar and belong to the same category. The core theoretical commitments of PATHS which we believe to also exemplify human open-ended category learning are a) the continual perception of new scene descriptions over the course of category learning; b) the context-dependent nature of that perceptual process, in which the scenes establish the context for one another; c) hypothesis construction by combining descriptions into logical expressions; and d) bi-directional interactions between perceiving new aspects of scenes and constructing hypotheses for the rule that distinguishes categories.

SeminarNeuroscienceRecording

Infant Relational Learning - Interactions with Visual and Linguistic Factors

Erin Anderson
Indiana University, Bloomington
Dec 2, 2020

Humans are incredible learners, a talent supported by our ability to detect and transfer relational similarities between items and events. Spotting these common relations despite perceptual differences is challenging, yet there’s evidence that this ability begins early, with infants as young as 3 months discriminating same and different (Anderson et al., 2018; Ferry et al., 2015). How? To understand the underlying mechanisms, I examine how learning outcomes in the first year correspond with changes in input and in infant age. I discuss the commonalities in this process with that seen in older children and adults, as well as differences due to interactions with other maturing processes like language and visual attention.

SeminarNeuroscience

Epigenetics and Dementia: Lessons From the 20-Year Indianapolis-Ibadan Dementia Study

Adesola Ogunniyi
University of Ibadan
Sep 28, 2020

Dementia is of global interest because of the rapid increase in both the number of individuals affected and the population at risk. It is essential that the risk factors be carefully delineated for the formulation of preventive strategies. Epigenetics refers to external modifications that turn genes "on" or "off”, and cross-cultural studies of migrant populations provide information on the interplay of environmental factors on genetic predisposition. The Indianapolis-Ibadan Dementia Study compared the prevalence, incidence and risk factors of dementia in African Americans and Yoruba to tease out the role of epigenetics in dementia. The presentation will provide details on biomarkers of dementia, vascular risk factors and the association with apolipoprotein E in the Yoruba. The purpose will be to inspire early career researchers on possibilities and research strategies applicable in African populations

SeminarNeuroscienceRecording

Learning from the infant’s point of view

Linda Smith
Indiana University
Jul 7, 2020

Learning depends on both the learning mechanism and the regularities in the training material, yet most research on human and machine learning focus on the discovering the mechanisms that underlie powerful learning. I will present evidence from our research focusing on the statistical structure of infant visual learning environments. The findings suggest that the statistical structure of those learning environments are not like those used in laboratory experiments on visual learning, in machine learning, or in our adult assumptions about how teach visual categories. The data derive from our use of head cameras and head-mounted eye trackers capturing FOV experiences in the home as well as in simulated home environments in the laboratory. The participants range from 1 month of age to 24 months. The observed statistical structure offers new insights into the developmental foundations of visual object recognition and suggest a computational rethinking of the problem of visual category formation. The observed environmental statistics also have direct implications for understanding the development of cortical visual systems.