← Back

Industry

Topic spotlight
TopicWorld Wide

industry

Discover seminars, jobs, and research tagged with industry across World Wide.
13 curated items12 Seminars1 Position
Updated 1 day ago
13 items · industry
13 results
SeminarOpen Source

Open SPM: A Modular Framework for Scanning Probe Microscopy

Marcos Penedo Garcia
Senior scientist, LBNI-IBI, EPFL Lausanne, Switzerland
Jun 23, 2025

OpenSPM aims to democratize innovation in the field of scanning probe microscopy (SPM), which is currently dominated by a few proprietary, closed systems that limit user-driven development. Our platform includes a high-speed OpenAFM head and base optimized for small cantilevers, an OpenAFM controller, a high-voltage amplifier, and interfaces compatible with several commercial AFM systems such as the Bruker Multimode, Nanosurf DriveAFM, Witec Alpha SNOM, Zeiss FIB-SEM XB550, and Nenovision Litescope. We have created a fully documented and community-driven OpenSPM platform, with training resources and sourcing information, which has already enabled the construction of more than 15 systems outside our lab. The controller is integrated with open-source tools like Gwyddion, HDF5, and Pycroscopy. We have also engaged external companies, two of which are integrating our controller into their products or interfaces. We see growing interest in applying parts of the OpenSPM platform to related techniques such as correlated microscopy, nanoindentation, and scanning electron/confocal microscopy. To support this, we are developing more generic and modular software, alongside a structured development workflow. A key feature of the OpenSPM system is its Python-based API, which makes the platform fully scriptable and ideal for AI and machine learning applications. This enables, for instance, automatic control and optimization of PID parameters, setpoints, and experiment workflows. With a growing contributor base and industry involvement, OpenSPM is well positioned to become a global, open platform for next-generation SPM innovation.

SeminarPsychology

How Generative AI is Revolutionizing the Software Developer Industry

Luca Di Grazia
Università della Svizzera Italiana
Sep 30, 2024

Generative AI is fundamentally transforming the software development industry by improving processes such as software testing, bug detection, bug fixes, and developer productivity. This talk explores how AI-driven techniques, particularly large language models (LLMs), are being utilized to generate realistic test scenarios, automate bug detection and repair, and streamline development workflows. As these technologies evolve, they promise to improve software quality and efficiency significantly. The discussion will cover key methodologies, challenges, and the future impact of generative AI on the software development lifecycle, offering a comprehensive overview of its revolutionary potential in the industry.

SeminarPsychology

Where Cognitive Neuroscience Meets Industry: Navigating the Intersections of Academia and Industry

Mirta Stantic
Royal Holloway, University of London
Feb 18, 2024

In this talk, Mirta will share her journey from her education a mathematically-focused high school to her currently unconventional career in London, emphasizing the evolution from a local education in Croatia to international experiences in the US and UK. We will explore the concept of interdisciplinary careers in the modern world, viewing them through the framework of increasing demand, flexibility, and dynamism in the current workplace. We will underscore the significance of interdisciplinary research for launching careers outside of academia, and bolstering those within. I will challenge the conventional norm of working either in academia or industry, and encourage discussion about the opportunities for combining the two in a myriad of career opportunities. I’ll use examples from my own and others’ research to highlight opportunities for early career researchers to extend their work into practical applications. Such an approach leverages the strengths of both sectors, fostering innovation and practical applications of research findings. I hope these insights can offer valuable perspectives for those looking to navigate the evolving demands of the global job market, illustrating the advantages of a versatile skill set that spans multiple disciplines and allows extensions into exciting career options.

SeminarNeuroscience

NEW TREATMENTS FOR PAIN: Unmet needs and how to meet them

Multiple speakers
Nov 8, 2022

“Of pain you could wish only one thing: that it should stop. Nothing in the world was so bad as physical pain. In the face of pain there are no heroes.- George Orwell, ‘1984’ " "Neuroscience has revealed the secrets of the brain and nervous system to an extent that was beyond the realm of imagination just 10-20 years ago, let alone in 1949 when Orwell wrote his prophetic novel. Understanding pain, however, presents a unique challenge to academia, industry and medicine, being both a measurable physiological process as well as deeply personal and subjective. Given the millions of people who suffer from pain every day, wishing only, “that it should stop”, the need to find more effective treatments cannot be understated." "‘New treatments for pain’ will bring together approximately 120 people from the commercial, academic, and not-for-profit sectors to share current knowledge, identify future directions, and enable collaboration, providing delegates with meaningful and practical ways to accelerate their own work into developing treatments for pain.

SeminarNeuroscience

Growing a world-class precision medicine industry

Prof Gary Egan and Dr Maggie Aulsebrook
Monash Biomedical Imaging
May 24, 2022

Monash Biomedical Imaging is part of the new $71.2 million Australian Precision Medicine Enterprise (APME) facility, which will deliver large-scale development and manufacturing of precision medicines and theranostic radiopharmaceuticals for industry and research. A key feature of the APME project is a high-energy cyclotron with multiple production clean rooms, which will be located on the Monash Biomedical Imaging (MBI) site in Clayton. This strategic co-location will facilitate radiochemistry, PET and SPECT research and clinical use of theranostic (therapeutic and diagnostic) radioisotopes produced on-site. In this webinar, MBI’s Professor Gary Egan and Dr Maggie Aulsebrook will explain how the APME will secure Australia’s supply of critical radiopharmaceuticals, build a globally competitive Australian manufacturing hub, and train scientists and engineers for the Australian workforce. They will cover the APME’s state-of-the-art 30 MeV and 18-24 MeV cyclotrons and radiochemistry facilities, as well as the services that will be accessible to students, scientists, clinical researchers, and pharmaceutical companies in Australia and around the world. The APME is a collaboration between Monash University, Global Medical Solutions Australia, and Telix Pharmaceuticals. Professor Gary Egan is Director of Monash Biomedical Imaging, Director of the ARC Centre of Excellence for Integrative Brain Function and a Distinguished Professor at the Turner Institute for Brain and Mental Health, Monash University. He is also lead investigator of the Victorian Biomedical Imaging Capability, and Deputy Director of the Australian National Imaging Facility. Dr Maggie Aulsebrook obtained her PhD in Chemistry at Monash University and specialises in the development and clinical translation of radiopharmaceuticals. She has led the development of several investigational radiopharmaceuticals for first-in-human application. Maggie leads the Radiochemistry Platform at Monash Biomedical Imaging.

SeminarNeuroscienceRecording

Spike-based embeddings for multi-relational graph data

Dominik Dold
European Space Research and Technology Centre
Nov 1, 2021

A rich data representation that finds wide application in industry and research is the so-called knowledge graph - a graph-based structure where entities are depicted as nodes and relations between them as edges. Complex systems like molecules, social networks and industrial factory systems can be described using the common language of knowledge graphs, allowing the usage of graph embedding algorithms to make context-aware predictions in these information-packed environments.

SeminarNeuroscienceRecording

Panel Discussion: Navigating the Industry of Artificial Intelligence

Jeanne E. Daniel (Autoscriber), Lydia de Lange (Spatialedge), Senyo Simpson (Aerobotics) & Kale-ab Tessera (InstaDeep)
May 4, 2021
SeminarNeuroscienceRecording

Data-driven Artificial Social Intelligence: From Social Appropriateness to Fairness

Hatice Gunes
Department of Computer Science and Technology, University of Cambridge
Mar 15, 2021

Designing artificially intelligent systems and interfaces with socio-emotional skills is a challenging task. Progress in industry and developments in academia provide us a positive outlook, however, the artificial social and emotional intelligence of the current technology is still limited. My lab’s research has been pushing the state of the art in a wide spectrum of research topics in this area, including the design and creation of new datasets; novel feature representations and learning algorithms for sensing and understanding human nonverbal behaviours in solo, dyadic and group settings; designing longitudinal human-robot interaction studies for wellbeing; and investigating how to mitigate the bias that creeps into these systems. In this talk, I will present some of my research team’s explorations in these areas including social appropriateness of robot actions, virtual reality based cognitive training with affective adaptation, and bias and fairness in data-driven emotionally intelligent systems.

SeminarPhysics of LifeRecording

The physics of cement cohesion

Emanuela Del Gado
Georgetown University
Jan 26, 2021

Cement is the main binding agent in concrete, literally gluing together rocks and sand into the most-used synthetic material on Earth. However, cement production is responsible for significant amounts of man- made greenhouse gases—in fact if the cement industry were a country, it would be the third largest emitter in the world. Alternatives to the current, environmentally harmful cement production process are not available essentially because the gaps in fundamental understanding hamper the development of smarter and more sustainable solutions. The ultimate challenge is to link the chemical composition of cement grains to the nanoscale physics of the cohesive forces that emerge when mixing cement with water. Cement nanoscale cohesion originates from the electrostatics of ions accumulated in a water-based solution between like-charged surfaces but it is not captured by existing theories because of the nature of the ions involved and the high surface charges. Surprisingly enough, this is also the case for unexplained cohesion in a range of colloidal and biological matter. About one century after the early studies of cement hydration, we have quantitatively solved this notoriously hard problem and discovered how cement cohesion develops during hydration. I will discuss how 3D numerical simulations that feature a simple but molecular description of ions and water, together with an analytical theory that goes beyond the traditional continuum approximations, helped us demonstrate that the optimized interlocking of ion-water structures determine the net cohesive forces and their evolution. These findings open the path to scientifically grounded strategies of material design for cements and have implications for a much wider range of materials and systems where ionic water-based solutions feature both strong Coulombic and confinement effects, ranging from biological membranes to soils. Construction materials are central to our society and to our life as humans on this planet, but usually far removed from fundamental science. We can now start to understand how cement physical-chemistry determines performance, durability and sustainability.