← Back

Inferior Temporal Cortex

Topic spotlight
TopicWorld Wide

inferior temporal cortex

Discover seminars, jobs, and research tagged with inferior temporal cortex across World Wide.
4 curated items2 Seminars2 ePosters
Updated over 4 years ago
4 items · inferior temporal cortex
4 results
SeminarNeuroscienceRecording

The neuroscience of color and what makes primates special

Bevil Conway
NIH
May 10, 2021

Among mammals, excellent color vision has evolved only in certain non-human primates. And yet, color is often assumed to be just a low-level stimulus feature with a modest role in encoding and recognizing objects. The rationale for this dogma is compelling: object recognition is excellent in grayscale images (consider black-and-white movies, where faces, places, objects, and story are readily apparent). In my talk I will discuss experiments in which we used color as a tool to uncover an organizational plan in inferior temporal cortex (parallel, multistage processing for places, faces, colors, and objects) and a visual-stimulus functional representation in prefrontal cortex (PFC). The discovery of an extensive network of color-biased domains within IT and PFC, regions implicated in high-level object vision and executive functions, compels a re-evaluation of the role of color in behavior. I will discuss behavioral studies prompted by the neurobiology that uncover a universal principle for color categorization across languages, the first systematic study of the color statistics of objects and a chromatic mechanism by which the brain may compute animacy, and a surprising paradoxical impact of memory on face color. Taken together, my talk will put forward the argument that color is not primarily for object recognition, but rather for the assessment of the likely behavioral relevance, or meaning, of the stuff we see.

SeminarNeuroscienceRecording

Hebbian learning, its inference, and brain oscillation

Sukbin Lim
NYU Shanghai
Mar 23, 2021

Despite the recent success of deep learning in artificial intelligence, the lack of biological plausibility and labeled data in natural learning still poses a challenge in understanding biological learning. At the other extreme lies Hebbian learning, the simplest local and unsupervised one, yet considered to be computationally less efficient. In this talk, I would introduce a novel method to infer the form of Hebbian learning from in vivo data. Applying the method to the data obtained from the monkey inferior temporal cortex for the recognition task indicates how Hebbian learning changes the dynamic properties of the circuits and may promote brain oscillation. Notably, recent electrophysiological data observed in rodent V1 showed that the effect of visual experience on direction selectivity was similar to that observed in monkey data and provided strong validation of asymmetric changes of feedforward and recurrent synaptic strengths inferred from monkey data. This may suggest a general learning principle underlying the same computation, such as familiarity detection across different features represented in different brain regions.

ePoster

Inter-individual Variability in Primate Inferior Temporal Cortex Representations: Insights from Macaque Neural Responses and Artificial Neural Networks

Kohitij Kar, James DiCarlo

COSYNE 2025

ePoster

Probing Motion-Form Interactions in the Macaque Inferior Temporal Cortex and Artificial Neural Networks for Complex Scene Understanding

Jean de Dieu Uwisengeyimana, Kohitij Kar

COSYNE 2025