Inhibitory Neurons
inhibitory neurons
Cellular Crosstalk in Brain Development, Evolution and Disease
Cellular crosstalk is an essential process during brain development and is influenced by numerous factors, including cell morphology, adhesion, the local extracellular matrix and secreted vesicles. Inspired by mutations associated with neurodevelopmental disorders, we focus on understanding the role of extracellular mechanisms essential for the proper development of the human brain. Therefore, we combine 2D and 3D in vitro human models to better understand the molecular and cellular mechanisms involved in progenitor proliferation and fate, migration and maturation of excitatory and inhibitory neurons during human brain development and tackle the causes of neurodevelopmental disorders.
Retinal input integration in excitatory and inhibitory neurons in the mouse superior colliculus in vivo
Prefrontal mechanisms involved in learning distractor-resistant working memory in a dual task
Working memory (WM) is a cognitive function that allows the short-term maintenance and manipulation of information when no longer accessible to the senses. It relies on temporarily storing stimulus features in the activity of neuronal populations. To preserve these dynamics from distraction it has been proposed that pre and post-distraction population activity decomposes into orthogonal subspaces. If orthogonalization is necessary to avoid WM distraction, it should emerge as performance in the task improves. We sought evidence of WM orthogonalization learning and the underlying mechanisms by analyzing calcium imaging data from the prelimbic (PrL) and anterior cingulate (ACC) cortices of mice as they learned to perform an olfactory dual task. The dual task combines an outer Delayed Paired-Association task (DPA) with an inner Go-NoGo task. We examined how neuronal activity reflected the process of protecting the DPA sample information against Go/NoGo distractors. As mice learned the task, we measured the overlap between the neural activity onto the low-dimensional subspaces that encode sample or distractor odors. Early in the training, pre-distraction activity overlapped with both sample and distractor subspaces. Later in the training, pre-distraction activity was strictly confined to the sample subspace, resulting in a more robust sample code. To gain mechanistic insight into how these low-dimensional WM representations evolve with learning we built a recurrent spiking network model of excitatory and inhibitory neurons with low-rank connections. The model links learning to (1) the orthogonalization of sample and distractor WM subspaces and (2) the orthogonalization of each subspace with irrelevant inputs. We validated (1) by measuring the angular distance between the sample and distractor subspaces through learning in the data. Prediction (2) was validated in PrL through the photoinhibition of ACC to PrL inputs, which induced early-training neural dynamics in well-trained animals. In the model, learning drives the network from a double-well attractor toward a more continuous ring attractor regime. We tested signatures for this dynamical evolution in the experimental data by estimating the energy landscape of the dynamics on a one-dimensional ring. In sum, our study defines network dynamics underlying the process of learning to shield WM representations from distracting tasks.
Cellular crosstalk in Neurodevelopmental Disorders
Cellular crosstalk is an essential process during brain development and it is influenced by numerous factors, including the morphology of the cells, their adhesion molecules, the local extracellular matrix and the secreted vesicles. Inspired by mutations associated with neurodevelopmental disorders, we focus on understanding the role of extracellular mechanisms essential for the correct development of the human brain. Hence, we combine the in vivo mouse model and the in vitro human-derived neurons, cerebral organoids, and dorso-ventral assembloids in order to better comprehend the molecular and cellular mechanisms involved in ventral progenitors’ proliferation and fate as well as migration and maturation of inhibitory neurons during human brain development and tackle the causes of neurodevelopmental disorders. We particularly focus on mutations in genes influencing cell-cell contacts, extracellular matrix, and secretion of vesicles and therefore study intrinsic and extrinsic mechanisms contributing to the formation of the brain. Our data reveal an important contribution of cell non-autonomous mechanisms in the development of neurodevelopmental disorders.
Integration of 3D human stem cell models derived from post-mortem tissue and statistical genomics to guide schizophrenia therapeutic development
Schizophrenia is a neuropsychiatric disorder characterized by positive symptoms (such as hallucinations and delusions), negative symptoms (such as avolition and withdrawal) and cognitive dysfunction1. Schizophrenia is highly heritable, and genetic studies are playing a pivotal role in identifying potential biomarkers and causal disease mechanisms with the hope of informing new treatments. Genome-wide association studies (GWAS) identified nearly 270 loci with a high statistical association with schizophrenia risk; however each locus confers only a small increase in risk therefore it is difficult to translate these findings into understanding disease biology that can lead to treatments. Induced pluripotent stem cell (iPSC) models are a tractable system to translate genetic findings and interrogate mechanisms of pathogenesis. Mounting research with patient-derived iPSCs has proposed several neurodevelopmental pathways altered in SCZ, such as neural progenitor cell (NPC) proliferation, imbalanced differentiation of excitatory and inhibitory cortical neurons. However, it is unclear what exactly these iPS models recapitulate, how potential perturbations of early brain development translates into illness in adults and how iPS models that represent fetal stages can be utilized to further drug development efforts to treat adult illness. I will present the largest transcriptome analysis of post-mortem caudate nucleus in schizophrenia where we discovered that decreased presynaptic DRD2 autoregulation is the causal dopamine risk factor for schizophrenia (Benjamin et al, Nature Neuroscience 2022 https://doi.org/10.1038/s41593-022-01182-7). We developed stem cell models from a subset of the postmortem cohort to better understand the molecular underpinnings of human psychiatric disorders (Sawada et al, Stem Cell Research 2020). We established a method for the differentiation of iPS cells into ventral forebrain organoids and performed single cell RNAseq and cellular phenotyping. To our knowledge, this is the first study to evaluate iPSC models of SZ from the same individuals with postmortem tissue. Our study establishes that striatal neurons in the patients with SCZ carry abnormalities that originated during early brain development. Differentiation of inhibitory neurons is accelerated whereas excitatory neuronal development is delayed, implicating an excitation and inhibition (E-I) imbalance during early brain development in SCZ. We found a significant overlap of genes upregulated in the inhibitory neurons in SCZ organoids with upregulated genes in postmortem caudate tissues from patients with SCZ compared with control individuals, including the donors of our iPS cell cohort. Altogether, we demonstrate that ventral forebrain organoids derived from postmortem tissue of individuals with schizophrenia recapitulate perturbed striatal gene expression dynamics of the donors’ brains (Sawada et al, biorxiv 2022 https://doi.org/10.1101/2022.05.26.493589).
Bridging the gap between artificial models and cortical circuits
Artificial neural networks simplify complex biological circuits into tractable models for computational exploration and experimentation. However, the simplification of artificial models also undermines their applicability to real brain dynamics. Typical efforts to address this mismatch add complexity to increasingly unwieldy models. Here, we take a different approach; by reducing the complexity of a biological cortical culture, we aim to distil the essential factors of neuronal dynamics and plasticity. We leverage recent advances in growing neurons from human induced pluripotent stem cells (hiPSCs) to analyse ex vivo cortical cultures with only two distinct excitatory and inhibitory neuron populations. Over 6 weeks of development, we record from thousands of neurons using high-density microelectrode arrays (HD-MEAs) that allow access to individual neurons and the broader population dynamics. We compare these dynamics to two-population artificial networks of single-compartment neurons with random sparse connections and show that they produce similar dynamics. Specifically, our model captures the firing and bursting statistics of the cultures. Moreover, tightly integrating models and cultures allows us to evaluate the impact of changing architectures over weeks of development, with and without external stimuli. Broadly, the use of simplified cortical cultures enables us to use the repertoire of theoretical neuroscience techniques established over the past decades on artificial network models. Our approach of deriving neural networks from human cells also allows us, for the first time, to directly compare neural dynamics of disease and control. We found that cultures e.g. from epilepsy patients tended to have increasingly more avalanches of synchronous activity over weeks of development, in contrast to the control cultures. Next, we will test possible interventions, in silico and in vitro, in a drive for personalised approaches to medical care. This work starts bridging an important theoretical-experimental neuroscience gap for advancing our understanding of mammalian neuron dynamics.
Universal function approximation in balanced spiking networks through convex-concave boundary composition
The spike-threshold nonlinearity is a fundamental, yet enigmatic, component of biological computation — despite its role in many theories, it has evaded definitive characterisation. Indeed, much classic work has attempted to limit the focus on spiking by smoothing over the spike threshold or by approximating spiking dynamics with firing-rate dynamics. Here, we take a novel perspective that captures the full potential of spike-based computation. Based on previous studies of the geometry of efficient spike-coding networks, we consider a population of neurons with low-rank connectivity, allowing us to cast each neuron’s threshold as a boundary in a space of population modes, or latent variables. Each neuron divides this latent space into subthreshold and suprathreshold areas. We then demonstrate how a network of inhibitory (I) neurons forms a convex, attracting boundary in the latent coding space, and a network of excitatory (E) neurons forms a concave, repellant boundary. Finally, we show how the combination of the two yields stable dynamics at the crossing of the E and I boundaries, and can be mapped onto a constrained optimization problem. The resultant EI networks are balanced, inhibition-stabilized, and exhibit asynchronous irregular activity, thereby closely resembling cortical networks of the brain. Moreover, we demonstrate how such networks can be tuned to either suppress or amplify noise, and how the composition of inhibitory convex and excitatory concave boundaries can result in universal function approximation. Our work puts forth a new theory of biologically-plausible computation in balanced spiking networks, and could serve as a novel framework for scalable and interpretable computation with spikes.
Lateral entorhinal cortex directly influences medial entorhinal cortex through synaptic connections in layer 1
Standard models of episodic memory suggest that lateral (LEC) and medial entorhinal cortex (MEC) send independent inputs to the hippocampus, each carrying different types of information. Here, we describe a pathway by which information is integrated between LEC and MEC prior to reaching hippocampus. We demonstrate that LEC sends strong projections to MEC arising from neurons that receive neocortical inputs. Activation of LEC inputs drives excitation of hippocampal-projecting neurons in MEC layer 2, typically followed by inhibition that is accounted for by parallel activation of local inhibitory neurons. We therefore propose that local circuits in MEC may support integration of ‘what’ and ‘where’ information.
Reconstructing inhibitory circuits in a damaged brain
Inhibitory interneurons govern the sparse activation of principal cells that permits appropriate behaviors, but they among the most vulnerable to brain damage. Our recent work has demonstrated important roles for inhibitory neurons in disorders of brain development, injury and epilepsy. These studies have motivated our ongoing efforts to understand how these cells operate at the synaptic, circuit and behavioral levels and in designing new technologies targeting specific populations of interneurons for therapy. I will discuss our recent efforts examining the role of interneurons in traumatic brain injury and in designing cell transplantation strategies - based on the generation of new inhibitory interneurons - that enable precise manipulation of inhibitory circuits in the injured brain. I will also discuss our ongoing efforts using monosynaptic virus tracing and whole-brain clearing methods to generate brain-wide maps of inhibitory circuits in the rodent brain. By comprehensively mapping the wiring of individual cell types on a global scale, we have uncovered a fundamental strategy to sustain and optimize inhibition following traumatic brain injury that involves spatial reorganization of local and long-range inputs to inhibitory neurons. These recent findings suggest that brain damage, even when focally restricted, likely has a far broader affect on brain-wide neural function than previously appreciated.
A transcriptomic axis predicts state modulation of cortical interneurons
Transcriptomics has revealed that cortical inhibitory neurons exhibit a great diversity of fine molecular subtypes, but it is not known whether these subtypes have correspondingly diverse activity patterns in the living brain. We show that inhibitory subtypes in primary visual cortex (V1) have diverse correlates with brain state, but that this diversity is organized by a single factor: position along their main axis of transcriptomic variation. We combined in vivo 2-photon calcium imaging of mouse V1 with a novel transcriptomic method to identify mRNAs for 72 selected genes in ex vivo slices. We classified inhibitory neurons imaged in layers 1-3 into a three-level hierarchy of 5 Subclasses, 11 Types, and 35 Subtypes using previously-defined transcriptomic clusters. Responses to visual stimuli differed significantly only across Subclasses, suppressing cells in the Sncg Subclass while driving cells in the other Subclasses. Modulation by brain state differed at all hierarchical levels but could be largely predicted from the first transcriptomic principal component, which also predicted correlations with simultaneously recorded cells. Inhibitory Subtypes that fired more in resting, oscillatory brain states have less axon in layer 1, narrower spikes, lower input resistance and weaker adaptation as determined in vitro and express more inhibitory cholinergic receptors. Subtypes firing more during arousal had the opposite properties. Thus, a simple principle may largely explain how diverse inhibitory V1 Subtypes shape state-dependent cortical processing.
Multiscale modeling of brain states, from spiking networks to the whole brain
Modeling brain mechanisms is often confined to a given scale, such as single-cell models, network models or whole-brain models, and it is often difficult to relate these models. Here, we show an approach to build models across scales, starting from the level of circuits to the whole brain. The key is the design of accurate population models derived from biophysical models of networks of excitatory and inhibitory neurons, using mean-field techniques. Such population models can be later integrated as units in large-scale networks defining entire brain areas or the whole brain. We illustrate this approach by the simulation of asynchronous and slow-wave states, from circuits to the whole brain. At the mesoscale (millimeters), these models account for travelling activity waves in cortex, and at the macroscale (centimeters), the models reproduce the synchrony of slow waves and their responsiveness to external stimuli. This approach can also be used to evaluate the impact of sub-cellular parameters, such as receptor types or membrane conductances, on the emergent behavior at the whole-brain level. This is illustrated with simulations of the effect of anesthetics. The program codes are open source and run in open-access platforms (such as EBRAINS).
Generating Cortical Inhibitory Neurons for the Human Brain
The GluN2A Subunit of the NMDA Receptor and Parvalbumin Interneurons: A Possible Role in Interneuron Development
N-methyl-D-aspartate receptors (NMDARs) are excitatory glutamate-gated ion channels that are expressed throughout the central nervous system. NMDARs mediate calcium entry into cells, and are involved in a host of neurological functions. The GluN2A subunit, encoded by the GRIN2A gene, is expressed by both excitatory and inhibitory neurons, with well described roles in pyramidal cells. By using Grin2a knockout mice, we show that the loss of GluN2A signaling impacts parvalbumin-positive (PV) GABAergic interneuron function in hippocampus. Grin2a knockout mice have 33% more PV cells in CA1 compared to wild type but similar cholecystokinin-positive cell density. Immunohistochemistry and electrophysiological recordings show that excess PV cells do eventually incorporate into the hippocampal network and participate in phasic inhibition. Although the morphology of Grin2a knockout PV cells is unaffected, excitability and action-potential firing properties show age-dependent alterations. Preadolescent (P20-25) PV cells have an increased input resistance, longer membrane time constant, longer action-potential half-width, a lower current threshold for depolarization-induced block of action-potential firing, and a decrease in peak action-potential firing rate. Each of these measures are corrected in adulthood, reaching wild type levels, suggesting a potential delay of electrophysiological maturation. The circuit and behavioral implications of this age-dependent PV interneuron malfunction are unknown. However, neonatal Grin2a knockout mice are more susceptible to lipopolysaccharide and febrile-induced seizures, consistent with a critical role for early GluN2A signaling in development and maintenance of excitatory-inhibitory balance. These results could provide insights into how loss-of-function GRIN2A human variants generate an epileptic phenotypes.
Response of cortical networks to optogenetic stimulation: Experiment vs. theory
Optogenetics is a powerful tool that allows experimentalists to perturb neural circuits. What can we learn about a network from observing its response to perturbations? I will first describe the results of optogenetic activation of inhibitory neurons in mice cortex, and show that the results are consistent with inhibition stabilization. I will then move to experiments in which excitatory neurons are activated optogenetically, with or without visual inputs, in mice and monkeys. In some conditions, these experiments show a surprising result that the distribution of firing rates is not significantly changed by stimulation, even though firing rates of individual neurons are strongly modified. I will show in which conditions a network model of excitatory and inhibitory neurons can reproduce this feature.
Inhibitory connectivity and computations in olfaction
We use the olfactory system and forebrain of (adult) zebrafish as a model to analyze how relevant information is extracted from sensory inputs, how information is stored in memory circuits, and how sensory inputs inform behavior. A series of recent findings provides evidence that inhibition has not only homeostatic functions in neuronal circuits but makes highly specific, instructive contributions to behaviorally relevant computations in different brain regions. These observations imply that the connectivity among excitatory and inhibitory neurons exhibits essential higher-order structure that cannot be determined without dense network reconstructions. To analyze such connectivity we developed an approach referred to as “dynamical connectomics” that combines 2-photon calcium imaging of neuronal population activity with EM-based dense neuronal circuit reconstruction. In the olfactory bulb, this approach identified specific connectivity among co-tuned cohorts of excitatory and inhibitory neurons that can account for the decorrelation and normalization (“whitening”) of odor representations in this brain region. These results provide a mechanistic explanation for a fundamental neural computation that strictly requires specific network connectivity.
NMC4 Short Talk: Multiscale and extended retrieval of associative memory structures in a cortical model of local-global inhibition balance
Inhibitory neurons take on many forms and functions. How this diversity contributes to memory function is not completely known. Previous formal studies indicate inhibition differentiated by local and global connectivity in associative memory networks functions to rescale the level of retrieval of excitatory assemblies. However, such studies lack biological details such as a distinction between types of neurons (excitatory and inhibitory), unrealistic connection schemas, and non-sparse assemblies. In this study, we present a rate-based cortical model where neurons are distinguished (as excitatory, local inhibitory, or global inhibitory), connected more realistically, and where memory items correspond to sparse excitatory assemblies. We use this model to study how local-global inhibition balance can alter memory retrieval in associative memory structures, including naturalistic and artificial structures. Experimental studies have reported inhibitory neurons and their sub-types uniquely respond to specific stimuli and can form sophisticated, joint excitatory-inhibitory assemblies. Our model suggests such joint assemblies, as well as a distribution and rebalancing of overall inhibition between two inhibitory sub-populations – one connected to excitatory assemblies locally and the other connected globally – can quadruple the range of retrieval across related memories. We identify a possible functional role for local-global inhibitory balance to, in the context of choice or preference of relationships, permit and maintain a broader range of memory items when local inhibition is dominant and conversely consolidate and strengthen a smaller range of memory items when global inhibition is dominant. This model therefore highlights a biologically-plausible and behaviourally-useful function of inhibitory diversity in memory.
The generation of cortical novelty responses through inhibitory plasticity
Animals depend on fast and reliable detection of novel stimuli in their environment. Neurons in multiple sensory areas respond more strongly to novel in comparison to familiar stimuli. Yet, it remains unclear which circuit, cellular, and synaptic mechanisms underlie those responses. Here, we show that spike-timing-dependent plasticity of inhibitory-to-excitatory synapses generates novelty responses in a recurrent spiking network model. Inhibitory plasticity increases the inhibition onto excitatory neurons tuned to familiar stimuli, while inhibition for novel stimuli remains low, leading to a network novelty response. The generation of novelty responses does not depend on the periodicity but rather on the distribution of presented stimuli. By including tuning of inhibitory neurons, the network further captures stimulus-specific adaptation. Finally, we suggest that disinhibition can control the amplification of novelty responses. Therefore, inhibitory plasticity provides a flexible, biologically plausible mechanism to detect the novelty of bottom-up stimuli, enabling us to make experimentally testable predictions.
A brain circuit for curiosity
Motivational drives are internal states that can be different even in similar interactions with external stimuli. Curiosity as the motivational drive for novelty-seeking and investigating the surrounding environment is for survival as essential and intrinsic as hunger. Curiosity, hunger, and appetitive aggression drive three different goal-directed behaviors—novelty seeking, food eating, and hunting— but these behaviors are composed of similar actions in animals. This similarity of actions has made it challenging to study novelty seeking and distinguish it from eating and hunting in nonarticulating animals. The brain mechanisms underlying this basic survival drive, curiosity, and novelty-seeking behavior have remained unclear. In spite of having well-developed techniques to study mouse brain circuits, there are many controversial and different results in the field of motivational behavior. This has left the functions of motivational brain regions such as the zona incerta (ZI) still uncertain. Not having a transparent, nonreinforced, and easily replicable paradigm is one of the main causes of this uncertainty. Therefore, we chose a simple solution to conduct our research: giving the mouse freedom to choose what it wants—double freeaccess choice. By examining mice in an experimental battery of object free-access double-choice (FADC) and social interaction tests—using optogenetics, chemogenetics, calcium fiber photometry, multichannel recording electrophysiology, and multicolor mRNA in situ hybridization—we uncovered a cell type–specific cortico-subcortical brain circuit of the curiosity and novelty-seeking behavior. We found in mice that inhibitory neurons in the medial ZI (ZIm) are essential for the decision to investigate an object or a conspecific. These neurons receive excitatory input from the prelimbic cortex to signal the initiation of exploration. This signal is modulated in the ZIm by the level of investigatory motivation. Increased activity in the ZIm instigates deep investigative action by inhibiting the periaqueductal gray region. A subpopulation of inhibitory ZIm neurons expressing tachykinin 1 (TAC1) modulates the investigatory behavior.
A theory for Hebbian learning in recurrent E-I networks
The Stabilized Supralinear Network is a model of recurrently connected excitatory (E) and inhibitory (I) neurons with a supralinear input-output relation. It can explain cortical computations such as response normalization and inhibitory stabilization. However, the network's connectivity is designed by hand, based on experimental measurements. How the recurrent synaptic weights can be learned from the sensory input statistics in a biologically plausible way is unknown. Earlier theoretical work on plasticity focused on single neurons and the balance of excitation and inhibition but did not consider the simultaneous plasticity of recurrent synapses and the formation of receptive fields. Here we present a recurrent E-I network model where all synaptic connections are simultaneously plastic, and E neurons self-stabilize by recruiting co-tuned inhibition. Motivated by experimental results, we employ a local Hebbian plasticity rule with multiplicative normalization for E and I synapses. We develop a theoretical framework that explains how plasticity enables inhibition balanced excitatory receptive fields that match experimental results. We show analytically that sufficiently strong inhibition allows neurons' receptive fields to decorrelate and distribute themselves across the stimulus space. For strong recurrent excitation, the network becomes stabilized by inhibition, which prevents unconstrained self-excitation. In this regime, external inputs integrate sublinearly. As in the Stabilized Supralinear Network, this results in response normalization and winner-takes-all dynamics: when two competing stimuli are presented, the network response is dominated by the stronger stimulus while the weaker stimulus is suppressed. In summary, we present a biologically plausible theoretical framework to model plasticity in fully plastic recurrent E-I networks. While the connectivity is derived from the sensory input statistics, the circuit performs meaningful computations. Our work provides a mathematical framework of plasticity in recurrent networks, which has previously only been studied numerically and can serve as the basis for a new generation of brain-inspired unsupervised machine learning algorithms.
Co-tuned, balanced excitation and inhibition in olfactory memory networks
Odor memories are exceptionally robust and essential for the survival of many species. In rodents, the olfactory cortex shows features of an autoassociative memory network and plays a key role in the retrieval of olfactory memories (Meissner-Bernard et al., 2019). Interestingly, the telencephalic area Dp, the zebrafish homolog of olfactory cortex, transiently enters a state of precise balance during the presentation of an odor (Rupprecht and Friedrich, 2018). This state is characterized by large synaptic conductances (relative to the resting conductance) and by co-tuning of excitation and inhibition in odor space and in time at the level of individual neurons. Our aim is to understand how this precise synaptic balance affects memory function. For this purpose, we build a simplified, yet biologically plausible spiking neural network model of Dp using experimental observations as constraints: besides precise balance, key features of Dp dynamics include low firing rates, odor-specific population activity and a dominance of recurrent inputs from Dp neurons relative to afferent inputs from neurons in the olfactory bulb. To achieve co-tuning of excitation and inhibition, we introduce structured connectivity by increasing connection probabilities and/or strength among ensembles of excitatory and inhibitory neurons. These ensembles are therefore structural memories of activity patterns representing specific odors. They form functional inhibitory-stabilized subnetworks, as identified by the “paradoxical effect” signature (Tsodyks et al., 1997): inhibition of inhibitory “memory” neurons leads to an increase of their activity. We investigate the benefits of co-tuning for olfactory and memory processing, by comparing inhibitory-stabilized networks with and without co-tuning. We find that co-tuned excitation and inhibition improves robustness to noise, pattern completion and pattern separation. In other words, retrieval of stored information from partial or degraded sensory inputs is enhanced, which is relevant in light of the instability of the olfactory environment. Furthermore, in co-tuned networks, odor-evoked activation of stored patterns does not persist after removal of the stimulus and may therefore subserve fast pattern classification. These findings provide valuable insights into the computations performed by the olfactory cortex, and into general effects of balanced state dynamics in associative memory networks.
How dendrites help solve biological and machine learning problems
Dendrites are thin processes that extend from the cell body of neurons, the main computing units of the brain. The role of dendrites in complex brain functions has been investigated for several decades, yet their direct involvement in key behaviors such as for example sensory perception has only recently been established. In my presentation I will discuss how computational modelling has helped us illuminate dendritic function. I will present the main findings of a number of projects in lab dealing with dendritic nonlinearities in excitatory and inhibitory and their consequences on neuronal tuning and memory formation, the role of dendrites in solving nonlinear problems in human neurons and recent efforts to advance machine learning algorithms by adopting dendritic features.
Assembly of the neocortex
The symposium will start with Prof Song-Hai Shi who will present “Assembly of the neocortex”. Then, Dr Lynette Lim will talk about “Shared and Unique Developmental Trajectories of Cortical Inhibitory Neurons”. Dr Alfredo Molina will deal with the “Tuneable progenitor cells to build the cerebral cortex”, and Prof Tomasz Nowakowski will present “Charting the molecular 'protomap' of the human cerebral cortex using single cell genomic”.
Playing fast and loose with glutamate builds healthy circuits in the developing cortex
The construction of cortical circuits requires the precise formation of connections between excitatory and inhibitory neurons during early development. Multiple factors, including neurotransmitters, neuronal activity, and neuronal-glial interactions, shape how these critical circuits form. Disruptions of these early processes can disrupt circuit formation, leading to epilepsy and other neurodevelopmental disorders. Here, I will describe our work into understanding how prolonged post-natal astrocyte development in the cortex creates a permissive window for glutamate signaling that provides tonic activation of developing interneurons through Grin2D NMDA receptors. Experimental disruption of this pathway results in hyperexcitable cortical circuits and human mutations in the Grin2D gene, as well as other related molecules that regulate early life glutamate signaling, are associated with devastating epileptic encephalopathies. We will explore fundamental mechanisms linking early life glutamate signaling and later circuit hyperexcitability, with an emphasis on potential therapeutic interventions aimed at reducing epilepsy and other neurological dysfunction.
Theory and modeling of whisking rhythm generation in the brainstem
The vIRt nucleus in the medulla, composed of mainly inhibitory neurons, is necessary for whisking rhythm generation. It innervates motoneurons in the facial nucleus (FN) that project to intrinsic vibrissa muscles. The nearby pre-Bötzinger complex (pBötC), which generates inhalation, sends inhibitory inputs to the vIRt nucleus which contribute to the synchronization of vIRt neurons. Lower-amplitude periodic whisking, however, can occur after decay of the pBötC signal. To explain how vIRt network generates these “intervening” whisks by bursting in synchrony, and how pBötC input induces strong whisks, we construct and analyze a conductance-based (CB) model of the vIRt circuit composed of hypothetical two groups, vIRtr and vIRtp, of bursting inhibitory neurons with spike-frequency adaptation currents and constant external inputs. The CB model is reduced to a rate model to enable analytical treatment. We find, analytically and computationally, that without pBötC input, periodic bursting states occur within a certain ranges of network connectivities. Whisk amplitudes increase with the level constant external input to the vIRT. With pBötC inhibition intact, the amplitude of the first whisk in a breathing cycle is larger than the intervening whisks for large pBötC input and small inhibitory coupling between the vIRT sub-populations. The pBötC input advances the next whisk and shortens its amplitude if it arrives at the beginning of the whisking cycle generated by the vIRT, and delays the next whisks if it arrives at the end of that cycle. Our theory provides a mechanism for whisking generation and reveals how whisking frequency and amplitude are controlled.
The emergence of contrast invariance in cortical circuits
Neurons in the primary visual cortex (V1) encode the orientation and contrast of visual stimuli through changes in firing rate (Hubel and Wiesel, 1962). Their activity typically peaks at a preferred orientation and decays to zero at the orientations that are orthogonal to the preferred. This activity pattern is re-scaled by contrast but its shape is preserved, a phenomenon known as contrast invariance. Contrast-invariant selectivity is also observed at the population level in V1 (Carandini and Sengpiel, 2004). The mechanisms supporting the emergence of contrast-invariance at the population level remain unclear. How does the activity of different neurons with diverse orientation selectivity and non-linear contrast sensitivity combine to give rise to contrast-invariant population selectivity? Theoretical studies have shown that in the balance limit, the properties of single-neurons do not determine the population activity (van Vreeswijk and Sompolinsky, 1996). Instead, the synaptic dynamics (Mongillo et al., 2012) as well as the intracortical connectivity (Rosenbaum and Doiron, 2014) shape the population activity in balanced networks. We report that short-term plasticity can change the synaptic strength between neurons as a function of the presynaptic activity, which in turns modifies the population response to a stimulus. Thus, the same circuit can process a stimulus in different ways –linearly, sublinearly, supralinearly – depending on the properties of the synapses. We found that balanced networks with excitatory to excitatory short-term synaptic plasticity cannot be contrast-invariant. Instead, short-term plasticity modifies the network selectivity such that the tuning curves are narrower (broader) for increasing contrast if synapses are facilitating (depressing). Based on these results, we wondered whether balanced networks with plastic synapses (other than short-term) can support the emergence of contrast-invariant selectivity. Mathematically, we found that the only synaptic transformation that supports perfect contrast invariance in balanced networks is a power-law release of neurotransmitter as a function of the presynaptic firing rate (in the excitatory to excitatory and in the excitatory to inhibitory neurons). We validate this finding using spiking network simulations, where we report contrast-invariant tuning curves when synapses release the neurotransmitter following a power- law function of the presynaptic firing rate. In summary, we show that synaptic plasticity controls the type of non-linear network response to stimulus contrast and that it can be a potential mechanism mediating the emergence of contrast invariance in balanced networks with orientation-dependent connectivity. Our results therefore connect the physiology of individual synapses to the network level and may help understand the establishment of contrast-invariant selectivity.
K+ Channel Gain of Function in Epilepsy, from Currents to Networks
Recent human gene discovery efforts show that gain-of-function (GOF) variants in the KCNT1gene, which encodes a Na+-activated K+ channel subunit, cause severe epilepsies and other neurodevelopmental disorders. Although the impact of these variants on the biophysical properties of the channels is well characterized, the mechanisms that link channel dysfunction to cellular and network hyperexcitability and human disease are unknown. Furthermore, precision therapies that correct channel biophysics in non-neuronal cells have had limited success in treating human disease, highlighting the need for a deeper understanding of how these variants affect neurons and networks. To address this gap, we developed a new mouse model with a pathogenic human variant knocked into the mouse Kcnt1gene. I will discuss our findings on the in vivo phenotypes of this mouse, focusing on our characterization of epileptiform neural activity using electrophysiology and widefield Ca++imaging. I will also talk about our investigations at the synaptic, cellular, and circuit levels, including the main finding that cortical inhibitory neurons in this model show a reduction in intrinsic excitability and action potential generation. Finally, I will discuss future directions to better understand the mechanisms underlying the cell-type specific effects, as well as the link between the cellular and network level effects of KCNT1 GOF.
To & From: Hippobellum & LINCs
The hippocampus is a well-studied structure, important for spatial navigation, learning, and memory. The hippocampus, however, still contains secrets and does not work in a vacuum. LINCs are a novel form of long-range inhibitory neuron in the hippocampus, which may be important for coordinating activity between the hippocampus and downstream structures. The cerebellum, while classically viewed as a motor structure, is being increasingly recognized for its impact on cognitive domains. Recent work has demonstrated that the cerebellum can influence the hippocampus, including place cells.
Flexible motor sequencing through thalamic control of cortical dynamics
The mechanisms by which neural circuits generate an extensible library of motor motifs and flexibly string them into arbitrary sequences are unclear. We developed a model in which inhibitory basal ganglia output neurons project to thalamic units that are themselves bidirectionally connected to a recurrent cortical network. During movement sequences, electrophysiological recordings of basal ganglia output neurons show sustained activity patterns that switch at the boundaries between motifs. Thus, we model these inhibitory patterns as silencing some thalamic neurons while leaving others disinhibited and free to interact with cortex during specific motifs. We show that a small number of disinhibited thalamic neurons can control cortical dynamics to generate specific motor output in a noise robust way. If the thalamic units associated with each motif are segregated, many motor outputs can be learned without interference and then combined in arbitrary orders for the flexible production of long and complex motor sequences.
Excitatory and inhibitory neurons exhibit distinct roles for task learning, temporal scaling, and working memory in recurrent spiking neural network models of neocortex.
Bernstein Conference 2024
Neocortical long-range inhibitory neurons coordinate state-dependent network synchronization
COSYNE 2022
Neocortical long-range inhibitory neurons coordinate state-dependent network synchronization
COSYNE 2022
Distinct roles of excitatory and inhibitory neurons in the macaque IT cortex in object recognition
COSYNE 2023
Experience-dependent connectivity of inhibitory neurons in the olfactory cortex
COSYNE 2025
Structural organization of inhibitory neurons is preserved across species and cortical areas
COSYNE 2025
Contribution of inhibitory neurons to motor and social phenotypes in ALS-FTD mouse models
FENS Forum 2024
Electrophysiologic, transcriptomic, and morphologic plasticity of spinal inhibitory neurons to decipher atypical mechanosensory perception in Autism Spectrum Disorder
FENS Forum 2024
High-resolution single-cell RNA-sequencing atlas for mouse cortical inhibitory neurons during development
FENS Forum 2024
Neocortical long-range inhibitory neurons coordinate state-dependent network synchronization and promote sleep
FENS Forum 2024
Neural dynamics and representational drift of inhibitory neurons in mouse auditory cortex
FENS Forum 2024
Patterns of mutual excitation and inhibition between classes of inhibitory neurons in the primary olfactory cortex
FENS Forum 2024
VIP Inhibitory Neurons in the Visual Cortex Perform Two Types of Predictive Processing: Stimulus Specific & Non-specific
Neuromatch 5