Interdisciplinary Approach
interdisciplinary approach
Mathematical and computational modelling of ocular hemodynamics: from theory to applications
Changes in ocular hemodynamics may be indicative of pathological conditions in the eye (e.g. glaucoma, age-related macular degeneration), but also elsewhere in the body (e.g. systemic hypertension, diabetes, neurodegenerative disorders). Thanks to its transparent fluids and structures that allow the light to go through, the eye offers a unique window on the circulation from large to small vessels, and from arteries to veins. Deciphering the causes that lead to changes in ocular hemodynamics in a specific individual could help prevent vision loss as well as aid in the diagnosis and management of diseases beyond the eye. In this talk, we will discuss how mathematical and computational modelling can help in this regard. We will focus on two main factors, namely blood pressure (BP), which drives the blood flow through the vessels, and intraocular pressure (IOP), which compresses the vessels and may impede the flow. Mechanism-driven models translates fundamental principles of physics and physiology into computable equations that allow for identification of cause-to-effect relationships among interplaying factors (e.g. BP, IOP, blood flow). While invaluable for causality, mechanism-driven models are often based on simplifying assumptions to make them tractable for analysis and simulation; however, this often brings into question their relevance beyond theoretical explorations. Data-driven models offer a natural remedy to address these short-comings. Data-driven methods may be supervised (based on labelled training data) or unsupervised (clustering and other data analytics) and they include models based on statistics, machine learning, deep learning and neural networks. Data-driven models naturally thrive on large datasets, making them scalable to a plethora of applications. While invaluable for scalability, data-driven models are often perceived as black- boxes, as their outcomes are difficult to explain in terms of fundamental principles of physics and physiology and this limits the delivery of actionable insights. The combination of mechanism-driven and data-driven models allows us to harness the advantages of both, as mechanism-driven models excel at interpretability but suffer from a lack of scalability, while data-driven models are excellent at scale but suffer in terms of generalizability and insights for hypothesis generation. This combined, integrative approach represents the pillar of the interdisciplinary approach to data science that will be discussed in this talk, with application to ocular hemodynamics and specific examples in glaucoma research.
The quest for the cortical algorithm
The cortical algorithm hypothesis states that there is one common computational framework to solve diverse cognitive problems such as vision, voice recognition and motion control. In my talk, I propose a strategy to guide the search for this algorithm and I present a few ideas on how some of its components might look like. I'll explain why a highly interdisciplinary approach is needed from neuroscience, computer science, mathematics and physics to make further progress in this important question.
A developmental-cognitive perspective on the impact of adolescent social media use
Concerns about the impact of social media use on adolescent well-being and mental health are common. While the amount of research in this area has increased rapidly over the last 5 years, most outputs are still marred by a multitude of limitations. These shortcomings have left our understanding of social media effects severely limited, holding back both scientific discovery and policy interventions. This talk discusses how developmental, cognitive and neuroscientific approaches might provide a new and improved way of studying social media effects. It will detail new studies in support of this idea, and raise potential avenues for collaborative work across the Cambridge Neuroscience community. As the digital world now (re)shapes what it means for us to live, communicate and develop, only an interdisciplinary approach will allow us to truly understand its impacts.