← Back

Intracranial

Topic spotlight
TopicWorld Wide

Intracranial

Discover seminars, jobs, and research tagged with Intracranial across World Wide.
19 curated items11 Seminars7 ePosters1 Position
Updated 1 day ago
19 items · Intracranial
19 results
PositionNeuroscience

Dr Avgis Hajipapas

University of Nicosia Medical School
Nicosia, Cyprus
Dec 5, 2025

The PhD in Medical Sciences: The University of Nicosia Medical School offers the degree PhD in Medical Sciences. The degree is awarded to students who successfully complete an independent research programme that breaks new ground in the chosen field of study. The PhD programme aspires to empower students to become independent researchers, thus advancing innovation and development. The Research Project: We are currently inviting application through a competitive process for high calibre candidates to apply for one PhD Scholarship in the field of Neuroscience. The successful candidate will enrol on the PhD programme in Medical Sciences and will work under the Supervision of Prof Avgis Hadjipapas, Professor for Neuroscience and Research Methods at the University of Nicosia Medical School. The project is based on an international collaboration between the University of Nicosia Medical School, (UN) the University Maastricht University Medical Center (MUMC), Maastricht University (MU) and McGill University (McGill U). The project predominantly involves data-analysis (signal processing), which means that a large part of the project can be conducted remotely. Project Description: Title of research project: Characterization of circadian rhythm modulations in intracranial EEG and their relationship to seizure onsets in focal epilepsy Background, rationale and objectives: Epilepsy affects roughly 1% of the population, and about a third of patients have unpredictable seizures which cannot be adequately controlled with medication (Kuhlmann et al., 2018). Therefore, better understanding of seizure generation and improving seizure predictability are central goals in epilepsy research to prevent seizures from occurring. Recent investigations by our own (Mitsis et al., 2020) and other groups (Leguia et al., 2021) have shown that seizure onsets exhibit a tight correlation to certain phases of circadian rhythms, which leads to improved seizure predictability. However, our previous work (Mitsis et al., 2020) only utilized surface EEG. In this project, and based on a collaboration formed between the University of Nicosia Medical School (UN), Maastricht University Medical Center (MUMC), Maastricht University (MU), and McGill University (McGill U), we will address this question by examining intracranial recordings provided by the MUMC partner, obtained directly from the area of the suspected epileptogenic focus. We will first characterize in detail the circadian variation of signal parameters extracted from the intracranial EEG. We will then examine whether seizure onsets are phase coupled (correlated) to these circadian modulations. This will inform both important pathophysiological questions in terms of the extent of the functional seizure generating network. Further, analysis of this correlation at the level of individual patient recordings will inform the feasibility of seizure forecasting informed by circadian rhythms. Successful candidates will benefit from interacting with an international and interdisciplinary consortium of neuroscientists, neurologists and engineers throughout the duration of the project. References Karoly, P.J., Ung, H., Grayden, D.B., Kuhlmann, L., Leyde, K., Cook, M.J., Freestone, D.R., 2017. The circadian profile of epilepsy improves seizure forecasting. Brain 140, 2169–2182. https://doi.org/10.1093/brain/awx173 Kuhlmann, L., Lehnertz, K., Richardson, M.P., Schelter, B., Zaveri, H.P., 2018. Seizure prediction — ready for a new era. Nat. Rev. Neurol. https://doi.org/10.1038/s41582-018-0055-2 Leguia, M.G., Andrzejak, R.G., Rummel, C., Fan, J.M., Mirro, E.A., Tcheng, T.K., Rao, V.R., Baud, M.O., 2021. Seizure Cycles in Focal Epilepsy. JAMA Neurol. In press, 1–10. https://doi.org/10.1001/jamaneurol.2020.5370 Mitsis, G.D., Anastasiadou, M.N., Christodoulakis, M., Papathanasiou, E.S., Papacostas, S.S., Hadjipapas, A., 2020. Functional brain networks of patients with epilepsy exhibit pronounced multiscale periodicities, which correlate with seizure onset. Hum. Brain Mapp. hbm.24930. https://doi.org/10.1002/hbm.24930 The Scholarship: The Scholarship will have a duration of three to four years and will cover: • The tuition fees for the PhD programme which are €13,500 in total for the first 3 years and €1,500 for year 4. • A monthly stipend of €1,000 for the duration of three to four years. Application for the PhD Scholarship: Candidates should submit an online application through this link and upload the following supporting documents: • A cover letter clearly stating that they apply for the PhD Scholarship in the field of Neuroscience for the PhD Research Project ‘Characterization of circadian rhythm modulations in intracranial EEG and their relationship to seizure onsets in focal epilepsy.’ • Copies of the applicant’s qualifications/degree(s) – the application can be assessed with scanned copies, but certified true copies must be provided if the candidate is successful and prior to enrolment on the PhD programme. • Copies of the applicant’s transcript(s) - the application can be assessed with scanned copies, but certified true copies must be provided if the candidate is successful and prior to enrolment on the PhD programme. • Proof of English language proficiency such as IELTS with a score of 7 overall and with a minimum score of 7 in writing or TOEFL iBT with a score of 94 overall and a minimum score of 27 in Writing. Other internationally recognized English language qualifications might be considered upon review. Students from the UK, Ireland USA, Canada (from English speaking provinces), Australia and New Zealand are exempt from the English language requirement. • Two reference letters, of which at least one should be from an academic. • A full Curriculum Vitae (CV). Applications should be submitted by Friday, July 29, 2022 at 5pm. Only fully completed applications, containing all necessary supporting documents will be reviewed. Only candidates who are shortlisted will be contacted and invited to an interview.

SeminarNeuroscience

Localisation of Seizure Onset Zone in Epilepsy Using Time Series Analysis of Intracranial Data

Hamid Karimi-Rouzbahani
The University of Queensland
Oct 10, 2024

There are over 30 million people with drug-resistant epilepsy worldwide. When neuroimaging and non-invasive neural recordings fail to localise seizure onset zones (SOZ), intracranial recordings become the best chance for localisation and seizure-freedom in those patients. However, intracranial neural activities remain hard to visually discriminate across recording channels, which limits the success of intracranial visual investigations. In this presentation, I present methods which quantify intracranial neural time series and combine them with explainable machine learning algorithms to localise the SOZ in the epileptic brain. I present the potentials and limitations of our methods in the localisation of SOZ in epilepsy providing insights for future research in this area.

SeminarNeuroscienceRecording

Off the rails - how pathological patterns of whole brain activity emerge in epileptic seizures

Richard Rosch
King's College London
Mar 14, 2023

In most brains across the animal kingdom, brain dynamics can enter pathological states that are recognisable as epileptic seizures. Yet usually, brain operate within certain constraints given through neuronal function and synaptic coupling, that will prevent epileptic seizure dynamics from emerging. In this talk, I will bring together different approaches to identifying how networks in the broadest sense shape brain dynamics. Using illustrative examples from intracranial EEG recordings, disorders characterised by molecular disruption of a single neurotransmitter receptor type, to single-cell recordings of whole-brain activity in the larval zebrafish, I will address three key questions - (1) how does the regionally specific composition of synaptic receptors shape ongoing physiological brain activity; (2) how can disruption of this regionally specific balance result in abnormal brain dynamics; and (3) which cellular patterns underly the transition into an epileptic seizure.

SeminarNeuroscience

Unravelling bistable perception from human intracranial recordings

Rodica Curtu
UIOWA
Apr 5, 2022

Discovering dynamical patterns from high fidelity timeseries is typically a challenging task. In this talk, the timeseries data consist of neural recordings taken from the auditory cortex of human subjects who listened to sequences of repeated triplets of tones and reported their perception by pressing a button. Subjects reported spontaneous alternations between two auditory perceptual states (1-stream and 2-streams). We discuss a data-driven method, which leverages time-delayed coordinates, diffusion maps, and dynamic mode decomposition, to identify neural features that correlated with subject-reported switching between perceptual states.

SeminarNeuroscience

The functional connectome across temporal scales

Sepideh Sadaghiani
Assistant Professor, University of Illinois, USA
Mar 29, 2022

The view of human brain function has drastically shifted over the last decade, owing to the observation that the majority of brain activity is intrinsic rather than driven by external stimuli or cognitive demands. Specifically, all brain regions continuously communicate in spatiotemporally organized patterns that constitute the functional connectome, with consequences for cognition and behavior. In this talk, I will argue that another shift is underway, driven by new insights from synergistic interrogation of the functional connectome using different acquisition methods. The human functional connectome is typically investigated with functional magnetic resonance imaging (fMRI) that relies on the indirect hemodynamic signal, thereby emphasizing very slow connectivity across brain regions. Conversely, more recent methodological advances demonstrate that fast connectivity within the whole-brain connectome can be studied with real-time methods such as electroencephalography (EEG). Our findings show that combining fMRI with scalp or intracranial EEG in humans, especially when recorded concurrently, paints a rich picture of neural communication across the connectome. Specifically, the connectome comprises both fast, oscillation-based connectivity observable with EEG, as well as extremely slow processes best captured by fMRI. While the fast and slow processes share an important degree of spatial organization, these processes unfold in a temporally independent manner. Our observations suggest that fMRI and EEG may be envisaged as capturing distinct aspects of functional connectivity, rather than intermodal measurements of the same phenomenon. Infraslow fluctuation-based and rapid oscillation-based connectivity of various frequency bands constitute multiple dynamic trajectories through a shared state space of discrete connectome configurations. The multitude of flexible trajectories may concurrently enable functional connectivity across multiple independent sets of distributed brain regions.

SeminarNeuroscienceRecording

The Social Brain: From Models to Mental Health

Xiaosi Gu
Mount Sinai
Sep 16, 2021

Given the complex and dynamic nature of our social relationships, the human brain needs to quickly learn and adapt to new social situations. The breakdown of any of these computations could lead to social deficits, as observed in many psychiatric disorders. In this talk, I will present our recent neurocomputational and intracranial work that attempts to model both 1) how humans dynamically adapt beliefs about other people and 2) how individuals can exert influence over social others through model-based forward thinking. Lastly, I will present our findings of how impaired social computations might manifest in different disorders such as addiction, delusion, and autism. Taken together, these findings reveal the dynamic and proactive nature of human interactions as well as the clinical significance of these high-order social processes.

SeminarNeuroscienceRecording

Deciphering the Dynamics of the Unconscious Brain Under General Anesthesia

Emery N Brown
Massachusetts Institute of Technology
Jan 26, 2021

General anesthesia is a drug-induced, reversible condition comprised of five behavioral states: unconsciousness, amnesia (loss of memory), antinociception (loss of pain sensation), akinesia (immobility), and hemodynamic stability with control of the stress response. Our work shows that a primary mechanism through which anesthetics create these altered states of arousal is by initiating and maintaining highly structured oscillations. These oscillations impair communication among brain regions. We illustrate this effect by presenting findings from our human studies of general anesthesia using high-density EEG recordings and intracranial recordings. These studies have allowed us to give a detailed characterization of the neurophysiology of loss and recovery of consciousness due to propofol. We show how these dynamics change systematically with different anesthetic classes and with age. As a consequence, we have developed a principled, neuroscience-based paradigm for using the EEG to monitor the brain states of patients receiving general anesthesia. We demonstrate that the state of general anesthesia can be rapidly reversed by activating specific brain circuits. Finally, we demonstrate that the state of general anesthesia can be controlled using closed loop feedback control systems. The success of our research has depended critically on tight coupling of experiments, signal processing research and mathematical modeling.

SeminarNeuroscience

Emergent scientists discuss Alzheimer's disease

Christiana Bjørkli, Siddharth Ramanan
Norwegian University of Science and Technology, University of Cambridge
Oct 19, 2020

This seminar is part of our “Emergent Scientists” series, an initiative that provides a platform for scientists at the critical PhD/postdoc transition period to share their work with a broad audience and network. Summary: These talks cover Alzheimer’s disease (AD) research in both mice and humans. Christiana will discuss in particular the translational aspects of applying mouse work to humans and the importance of timing in disease pathology and intervention (e.g. timing between AD biomarkers vs. symptom onset, timing of therapy, etc.). Siddharth will discuss a rare variant of Alzheimer’s disease called “Logopenic Progressive Aphasia”, which presents with temporo-parietal atrophy yet relative sparing of hippocampal circuitry. Siddharth will discuss how, despite the unusual anatomical basis underlying this AD variant, degeneration of the angular gyrus in the left inferior parietal lobule contributes to memory deficits similar to those of typical amnesic Alzheimer’s disease. Christiana’s abstract: Alzheimer’s disease (AD) is a debilitating neurodegenerative disorder that causes severe deterioration of memory, cognition, behavior, and the ability to perform daily activities. The disease is characterized by the accumulation of two proteins in fibrillar form; Amyloid-β forms fibrils that accumulate as extracellular plaques while tau fibrils form intracellular tangles. Here we aim to translate findings from a commonly used AD mouse model to AD patients. Here we initiate and chronically inhibit neuropathology in lateral entorhinal cortex (LEC) layer two neurons in an AD mouse model. This is achieved by over-expressing P301L tau virally and chronically activating hM4Di DREADDs intracranially using the ligand dechloroclozapine. Biomarkers in cerebrospinal fluid (CSF) is measured longitudinally in the model using microdialysis, and we use this same system to intracranially administer drugs aimed at halting AD-related neuropathology. The models are additionally tested in a novel contextual memory task. Preliminary findings indicate that viral injections of P301L tau into LEC layer two reveal direct projections between this region and the outer molecular layer of dentate gyrus and the rest of hippocampus. Additionally, phosphorylated tau co-localize with ‘starter cells’ and appear to spread from the injection site. Preliminary microdialysis results suggest that the concentrations of CSF amyloid-β and tau proteins mirror changes observed along the disease cascade in patients. The disease-modifying drugs appear to halt neuropathological development in this preclincial model. These findings will lead to a novel platform for translational AD research, linking the extensive research done in rodents to clinical applications. Siddharth’s abstract: A distributed brain network supports our ability to remember past events. The parietal cortex is a critical member of this network, yet, its exact contributions to episodic remembering remain unclear. Neurodegenerative syndromes affecting the posterior neocortex offer a unique opportunity to understand the importance and role of parietal regions to episodic memory. In this talk, I introduce and explore the rare neurodegenerative syndrome of Logopenic Progressive Aphasia (LPA), an aphasic variant of Alzheimer’s disease presenting with early, left-lateralized temporo-parietal atrophy, amidst relatively spared hippocampal integrity. I then discuss two key studies from my recent Ph.D. work showcasing pervasive episodic and autobiographical memory dysfunction in LPA, to a level comparable to typical, amnesic Alzheimer’s disease. Using multimodal neuroimaging, I demonstrate how degeneration of the angular gyrus in the left inferior parietal lobule, and its structural connections to the hippocampus, contribute to amnesic profiles in this syndrome. I finally evaluate these findings in the context of memory profiles in other posterior cortical neurodegenerative syndromes as well as recent theoretical models underscoring the importance of the parietal cortex in the integration and representation of episodic contextual information.

ePoster

Intracranial electrophysiological evidence for a novel neuro-computational mechanism of cognitive flexibility in humans

Xinyuan Yan, Seth Koneig, Becket Ebitz, Benjamin Hayden, David Darrow, Alexander Herman

COSYNE 2023

ePoster

Human Intracranial Oscillatory Signatures of Aberrant Counterfactual Feedback Processing in Depression

Alexandra Fink, Salman Qasim, Lizbeth Nunez, Jacqueline Overton, Xiaosi Gu, Ignacio Saez

COSYNE 2025

ePoster

Intracranial recordings uncover neuronal dynamics of multidimensional reinforcement learning.

Christina Maher, Salman Qasim, Lizbeth Nunez Martinez, Angela Radulescu, Ignacio Saez

COSYNE 2025

ePoster

Evaluation of running wheel behavior as a reliable marker for severity assessment and humane endpoint detection in a rat model with intracranial tumor

Alina Ottlewski, Christine Häger, Mesbah Alam, Elvis J. Hermann, Franck Fogaing Kamgaing, Marion Bankstahl, Steven R. Talbot, Joachim K. Krauss, Andre Bleich, Kerstin Schwabe

FENS Forum 2024

ePoster

Intracranial atherosclerotic plaque and wall enhancement reflect the endothelial damage and arterial inflammatory level through ECM-1 levels and CCR5 expression in monocytes

Jesus Agulla, Beatriz Gómez-Vicente, María Hernández-Pérez, Rebeca Lapresa, Mercedes De Lera, Ana I. Calleja, Elisa Cortijo, Alicia Sierra, Javier Reyes, Margarita Rodríguez-Velasco, Angeles Almeida, Juan F. Arenillas

FENS Forum 2024

ePoster

A new open-source non-verbal semantic memory test reveals intracranial topography of category representation

Da Zhang, Edwina Tran, Jet Vonk, Kaitlin Casaletto, Maria Luisa Gorno-Tempini, Edward Chang, Jon Kleen

FENS Forum 2024

ePoster

Protective effects of intracranial stimulation on spatial memory and changes in miRNA serum levels in a sporadic rat model of Alzheimer disease: A longitudinal study

Andrea Riberas Sánchez, Soleil Garcia Brito, Gemma Carreras Badosa, Laia Vila Solés, Laura Aldavert Vera, Pilar Segura Torres, Gemma Huguet Blanco, Elisabet Kádár Garcia

FENS Forum 2024