Iprgcs
ipRGCs
The melanopsin mosaic: exploring the diversity of non-image forming retinal ganglion cells
In this talk, I will focus on recent work that has uncovered the diversity of intrinsically photosensitive retinal ganglion cells (ipRGCs). These are a unique type of retinal ganglion cell that contains the photopigment melanopsin. ipRGCs are the retinal neurons responsible for driving non-imaging forming behaviors and reflexes, such as circadian entrainment and pupil constriction, amongst many others. My lab has recently focused on uncovering the diversity of ipRGCs, their distribution throughout the mammalian retina, and their axon projections in the brain.
Visual circuits for threat anticipation
Melanopsin contributions to vision in mice and man
Color vision circuits for primate intrinsically photosensitive retinal ganglion cells
The rising and setting of the sun is accompanied by changes in both the irradiance and the spectral distribution of the sky. Since the discovery of intrinsically photosensitive retinal ganglion cells (ipRGCs) 20 years ago, considerable progress has been made in understanding melanopsin's contributions to encoding irradiance. Much less is known about the cone inputs to ipRGCs and how they could encode changes in the color of the sky. I will summarize our recent connectomic investigation into the cone-opponent inputs to primate ipRGCs and the implications of this work on our understanding of circadian photoentrainment and the evolution of color vision.
How do ipRGCs work? Evidence from the pupil light reflex
Since the discovery of the intrinsically photosensitive retinal ganglion cells (ipRGCs) – just two decades ago – substantial work has been carried out trying to understand their functioning. In this seminar, I’ll focus on pupillometry studies that have provided key clues about ipRGC behavior. Specifically, the interaction between the intrinsic response, rods, and cones will be discussed.
Illuminating Circadian Circuits
Proper alignment of the circadian system the environmental light/dark cycle is central to human health and well-being, and occurs exclusively via light input from the melanopsin-expressing, intrinsically photosensitive retinal ganglion cells (ipRGCs). I will discuss our lab’s recent work uncovering a new inhibitory signaling pathway from the eye to the brain that dampens the sensitivity of our circadian and pupil systems to light.
ipRGCs modulate calcium response of AVP neurons in central clock
FENS Forum 2024