Language Model
language model
Simulating Thought Disorder: Fine-Tuning Llama-2 for Synthetic Speech in Schizophrenia
LLMs and Human Language Processing
This webinar convened researchers at the intersection of Artificial Intelligence and Neuroscience to investigate how large language models (LLMs) can serve as valuable “model organisms” for understanding human language processing. Presenters showcased evidence that brain recordings (fMRI, MEG, ECoG) acquired while participants read or listened to unconstrained speech can be predicted by representations extracted from state-of-the-art text- and speech-based LLMs. In particular, text-based LLMs tend to align better with higher-level language regions, capturing more semantic aspects, while speech-based LLMs excel at explaining early auditory cortical responses. However, purely low-level features can drive part of these alignments, complicating interpretations. New methods, including perturbation analyses, highlight which linguistic variables matter for each cortical area and time scale. Further, “brain tuning” of LLMs—fine-tuning on measured neural signals—can improve semantic representations and downstream language tasks. Despite open questions about interpretability and exact neural mechanisms, these results demonstrate that LLMs provide a promising framework for probing the computations underlying human language comprehension and production at multiple spatiotemporal scales.
How Generative AI is Revolutionizing the Software Developer Industry
Generative AI is fundamentally transforming the software development industry by improving processes such as software testing, bug detection, bug fixes, and developer productivity. This talk explores how AI-driven techniques, particularly large language models (LLMs), are being utilized to generate realistic test scenarios, automate bug detection and repair, and streamline development workflows. As these technologies evolve, they promise to improve software quality and efficiency significantly. The discussion will cover key methodologies, challenges, and the future impact of generative AI on the software development lifecycle, offering a comprehensive overview of its revolutionary potential in the industry.
Llama 3.1 Paper: The Llama Family of Models
Modern artificial intelligence (AI) systems are powered by foundation models. This paper presents a new set of foundation models, called Llama 3. It is a herd of language models that natively support multilinguality, coding, reasoning, and tool usage. Our largest model is a dense Transformer with 405B parameters and a context window of up to 128K tokens. This paper presents an extensive empirical evaluation of Llama 3. We find that Llama 3 delivers comparable quality to leading language models such as GPT-4 on a plethora of tasks. We publicly release Llama 3, including pre-trained and post-trained versions of the 405B parameter language model and our Llama Guard 3 model for input and output safety. The paper also presents the results of experiments in which we integrate image, video, and speech capabilities into Llama 3 via a compositional approach. We observe this approach performs competitively with the state-of-the-art on image, video, and speech recognition tasks. The resulting models are not yet being broadly released as they are still under development.
Trends in NeuroAI - Brain-like topography in transformers (Topoformer)
Dr. Nicholas Blauch will present on his work "Topoformer: Brain-like topographic organization in transformer language models through spatial querying and reweighting". Dr. Blauch is a postdoctoral fellow in the Harvard Vision Lab advised by Talia Konkle and George Alvarez. Paper link: https://openreview.net/pdf?id=3pLMzgoZSA Trends in NeuroAI is a reading group hosted by the MedARC Neuroimaging & AI lab (https://medarc.ai/fmri | https://groups.google.com/g/medarc-fmri).
Generative models for video games (rescheduled)
Developing agents capable of modeling complex environments and human behaviors within them is a key goal of artificial intelligence research. Progress towards this goal has exciting potential for applications in video games, from new tools that empower game developers to realize new creative visions, to enabling new kinds of immersive player experiences. This talk focuses on recent advances of my team at Microsoft Research towards scalable machine learning architectures that effectively capture human gameplay data. In the first part of my talk, I will focus on diffusion models as generative models of human behavior. Previously shown to have impressive image generation capabilities, I present insights that unlock applications to imitation learning for sequential decision making. In the second part of my talk, I discuss a recent project taking ideas from language modeling to build a generative sequence model of an Xbox game.
Generative models for video games
Developing agents capable of modeling complex environments and human behaviors within them is a key goal of artificial intelligence research. Progress towards this goal has exciting potential for applications in video games, from new tools that empower game developers to realize new creative visions, to enabling new kinds of immersive player experiences. This talk focuses on recent advances of my team at Microsoft Research towards scalable machine learning architectures that effectively capture human gameplay data. In the first part of my talk, I will focus on diffusion models as generative models of human behavior. Previously shown to have impressive image generation capabilities, I present insights that unlock applications to imitation learning for sequential decision making. In the second part of my talk, I discuss a recent project taking ideas from language modeling to build a generative sequence model of an Xbox game.
Improving Language Understanding by Generative Pre Training
Natural language understanding comprises a wide range of diverse tasks such as textual entailment, question answering, semantic similarity assessment, and document classification. Although large unlabeled text corpora are abundant, labeled data for learning these specific tasks is scarce, making it challenging for discriminatively trained models to perform adequately. We demonstrate that large gains on these tasks can be realized by generative pre-training of a language model on a diverse corpus of unlabeled text, followed by discriminative fine-tuning on each specific task. In contrast to previous approaches, we make use of task-aware input transformations during fine-tuning to achieve effective transfer while requiring minimal changes to the model architecture. We demonstrate the effectiveness of our approach on a wide range of benchmarks for natural language understanding. Our general task-agnostic model outperforms discriminatively trained models that use architectures specifically crafted for each task, significantly improving upon the state of the art in 9 out of the 12 tasks studied. For instance, we achieve absolute improvements of 8.9% on commonsense reasoning (Stories Cloze Test), 5.7% on question answering (RACE), and 1.5% on textual entailment (MultiNLI).
A Comprehensive Overview of Large Language Models
Large Language Models (LLMs) have recently demonstrated remarkable capabilities in natural language processing tasks and beyond. This success of LLMs has led to a large influx of research contributions in this direction. These works encompass diverse topics such as architectural innovations, better training strategies, context length improvements, fine-tuning, multi-modal LLMs, robotics, datasets, benchmarking, efficiency, and more. With the rapid development of techniques and regular breakthroughs in LLM research, it has become considerably challenging to perceive the bigger picture of the advances in this direction. Considering the rapidly emerging plethora of literature on LLMs, it is imperative that the research community is able to benefit from a concise yet comprehensive overview of the recent developments in this field. This article provides an overview of the existing literature on a broad range of LLM-related concepts. Our self-contained comprehensive overview of LLMs discusses relevant background concepts along with covering the advanced topics at the frontier of research in LLMs. This review article is intended to not only provide a systematic survey but also a quick comprehensive reference for the researchers and practitioners to draw insights from extensive informative summaries of the existing works to advance the LLM research.
Deep language models as a cognitive model for natural language processing in the human brain
Enhancing Qualitative Coding with Large Language Models: Potential and Challenges
Qualitative coding is the process of categorizing and labeling raw data to identify themes, patterns, and concepts within qualitative research. This process requires significant time, reflection, and discussion, often characterized by inherent subjectivity and uncertainty. Here, we explore the possibility to leverage large language models (LLM) to enhance the process and assist researchers with qualitative coding. LLMs, trained on extensive human-generated text, possess an architecture that renders them capable of understanding the broader context of a conversation or text. This allows them to extract patterns and meaning effectively, making them particularly useful for the accurate extraction and coding of relevant themes. In our current approach, we employed the chatGPT 3.5 Turbo API, integrating it into the qualitative coding process for data from the SWISS100 study, specifically focusing on data derived from centenarians' experiences during the Covid-19 pandemic, as well as a systematic centenarian literature review. We provide several instances illustrating how our approach can assist researchers with extracting and coding relevant themes. With data from human coders on hand, we highlight points of convergence and divergence between AI and human thematic coding in the context of these data. Moving forward, our goal is to enhance the prototype and integrate it within an LLM designed for local storage and operation (LLaMa). Our initial findings highlight the potential of AI-enhanced qualitative coding, yet they also pinpoint areas requiring attention. Based on these observations, we formulate tentative recommendations for the optimal integration of LLMs in qualitative coding research. Further evaluations using varied datasets and comparisons among different LLMs will shed more light on the question of whether and how to integrate these models into this domain.
Do large language models solve verbal analogies like children do?
Analogical reasoning –learning about new things by relating it to previous knowledge– lies at the heart of human intelligence and creativity and forms the core of educational practice. Children start creating and using analogies early on, making incredible progress moving from associative processes to successful analogical reasoning. For example, if we ask a four-year-old “Horse belongs to stable like chicken belongs to …?” they may use association and reply “egg”, whereas older children will likely give the intended relational response “chicken coop” (or other term to refer to a chicken’s home). Interestingly, despite state-of-the-art AI-language models having superhuman encyclopedic knowledge and superior memory and computational power, our pilot studies show that these large language models often make mistakes providing associative rather than relational responses to verbal analogies. For example, when we asked four- to eight-year-olds to solve the analogy “body is to feet as tree is to …?” they responded “roots” without hesitation, but large language models tend to provide more associative responses such as “leaves”. In this study we examine the similarities and differences between children's and six large language models' (Dutch/multilingual models: RobBERT, BERT-je, M-BERT, GPT-2, M-GPT, Word2Vec and Fasttext) responses to verbal analogies extracted from an online adaptive learning environment, where >14,000 7-12 year-olds from the Netherlands solved 20 or more items from a database of 900 Dutch language verbal analogies.
Beyond Biologically Plausible Spiking Networks for Neuromorphic Computing
Biologically plausible spiking neural networks (SNNs) are an emerging architecture for deep learning tasks due to their energy efficiency when implemented on neuromorphic hardware. However, many of the biological features are at best irrelevant and at worst counterproductive when evaluated in the context of task performance and suitability for neuromorphic hardware. In this talk, I will present an alternative paradigm to design deep learning architectures with good task performance in real-world benchmarks while maintaining all the advantages of SNNs. We do this by focusing on two main features – event-based computation and activity sparsity. Starting from the performant gated recurrent unit (GRU) deep learning architecture, we modify it to make it event-based and activity-sparse. The resulting event-based GRU (EGRU) is extremely efficient for both training and inference. At the same time, it achieves performance close to conventional deep learning architectures in challenging tasks such as language modelling, gesture recognition and sequential MNIST.
General purpose event-based architectures for deep learning
Biologically plausible spiking neural networks (SNNs) are an emerging architecture for deep learning tasks due to their energy efficiency when implemented on neuromorphic hardware. However, many of the biological features are at best irrelevant and at worst counterproductive when evaluated in the context of task performance and suitability for neuromorphic hardware. In this talk, I will present an alternative paradigm to design deep learning architectures with good task performance in real-world benchmarks while maintaining all the advantages of SNNs. We do this by focusing on two main features -- event-based computation and activity sparsity. Starting from the performant gated recurrent unit (GRU) deep learning architecture, we modify it to make it event-based and activity-sparse. The resulting event-based GRU (EGRU) is extremely efficient for both training and inference. At the same time, it achieves performance close to conventional deep learning architectures in challenging tasks such as language modelling, gesture recognition and sequential MNIST
NMC4 Short Talk: Image embeddings informed by natural language improve predictions and understanding of human higher-level visual cortex
To better understand human scene understanding, we extracted features from images using CLIP, a neural network model of visual concept trained with supervision from natural language. We then constructed voxelwise encoding models to explain whole brain responses arising from viewing natural images from the Natural Scenes Dataset (NSD) - a large-scale fMRI dataset collected at 7T. Our results reveal that CLIP, as compared to convolution based image classification models such as ResNet or AlexNet, as well as language models such as BERT, gives rise to representations that enable better prediction performance - up to a 0.86 correlation with test data and an r-square of 0.75 - in higher-level visual cortex in humans. Moreover, CLIP representations explain distinctly unique variance in these higher-level visual areas as compared to models trained with only images or text. Control experiments show that the improvement in prediction observed with CLIP is not due to architectural differences (transformer vs. convolution) or to the encoding of image captions per se (vs. single object labels). Together our results indicate that CLIP and, more generally, multimodal models trained jointly on images and text, may serve as better candidate models of representation in human higher-level visual cortex. The bridge between language and vision provided by jointly trained models such as CLIP also opens up new and more semantically-rich ways of interpreting the visual brain.
Alignment of ANN Language Models with Humans After a Developmentally Realistic Amount of Training
COSYNE 2023
“Attentional fingerprints” in conceptual space: Reliable, individuating patterns of visual attention revealed using natural language modeling
COSYNE 2023
Analyzing animal behavior with domain-adapted vision-language models
FENS Forum 2024