Layer 5
layer 5
Spike train structure of cortical transcriptomic populations in vivo
The cortex comprises many neuronal types, which can be distinguished by their transcriptomes: the sets of genes they express. Little is known about the in vivo activity of these cell types, particularly as regards the structure of their spike trains, which might provide clues to cortical circuit function. To address this question, we used Neuropixels electrodes to record layer 5 excitatory populations in mouse V1, then transcriptomically identified the recorded cell types. To do so, we performed a subsequent recording of the same cells using 2-photon (2p) calcium imaging, identifying neurons between the two recording modalities by fingerprinting their responses to a “zebra noise” stimulus and estimating the path of the electrode through the 2p stack with a probabilistic method. We then cut brain slices and performed in situ transcriptomics to localize ~300 genes using coppaFISH3d, a new open source method, and aligned the transcriptomic data to the 2p stack. Analysis of the data is ongoing, and suggests substantial differences in spike time coordination between ET and IT neurons, as well as between transcriptomic subtypes of both these excitatory types.
A biological model system for studying predictive processing
Despite the increasing recognition of predictive processing in circuit neuroscience, little is known about how it may be implemented in cortical circuits. We set out to develop and characterise a biological model system with layer 5 pyramidal cells in the centre. We aim to gain access to prediction and internal model generating processes by controlling, understanding or monitoring everything else: the sensory environment, feed-forward and feed-back inputs, integrative properties, their spiking activity and output. I’ll show recent work from the lab establishing such a model system both in terms of biology as well as tool development.
NMC4 Short Talk: Resilience through diversity: Loss of neuronal heterogeneity in epileptogenic human tissue impairs network resilience to sudden changes in synchrony
A myriad of pathological changes associated with epilepsy, including the loss of specific cell types, improper expression of individual ion channels, and synaptic sprouting, can be recast as decreases in cell and circuit heterogeneity. In recent experimental work, we demonstrated that biophysical diversity is a key characteristic of human cortical pyramidal cells, and past theoretical work has shown that neuronal heterogeneity improves a neural circuit’s ability to encode information. Viewed alongside the fact that seizure is an information-poor brain state, these findings motivate the hypothesis that epileptogenesis can be recontextualized as a process where reduction in cellular heterogeneity renders neural circuits less resilient to seizure onset. By comparing whole-cell patch clamp recordings from layer 5 (L5) human cortical pyramidal neurons from epileptogenic and non-epileptogenic tissue, we present the first direct experimental evidence that a significant reduction in neural heterogeneity accompanies epilepsy. We directly implement experimentally-obtained heterogeneity levels in cortical excitatory-inhibitory (E-I) stochastic spiking network models. Low heterogeneity networks display unique dynamics typified by a sudden transition into a hyper-active and synchronous state paralleling ictogenesis. Mean-field analysis reveals a distinct mathematical structure in these networks distinguished by multi-stability. Furthermore, the mathematically characterized linearizing effect of heterogeneity on input-output response functions explains the counter-intuitive experimentally observed reduction in single-cell excitability in epileptogenic neurons. This joint experimental, computational, and mathematical study showcases that decreased neuronal heterogeneity exists in epileptogenic human cortical tissue, that this difference yields dynamical changes in neural networks paralleling ictogenesis, and that there is a fundamental explanation for these dynamics based in mathematically characterized effects of heterogeneity. These interdisciplinary results provide convincing evidence that biophysical diversity imbues neural circuits with resilience to seizure and a new lens through which to view epilepsy, the most common serious neurological disorder in the world, that could reveal new targets for clinical treatment.
Learning from unexpected events in the neocortical microcircuit
Predictive learning hypotheses posit that the neocortex learns a hierarchical model of the structure of features in the environment. Under these hypotheses, expected or predictable features are differentiated from unexpected ones by comparing bottom-up and top-down streams of data, with unexpected features then driving changes in the representation of incoming stimuli. This is supported by numerous studies in early sensory cortices showing that pyramidal neurons respond particularly strongly to unexpected stimulus events. However, it remains unknown how their responses govern subsequent changes in stimulus representations, and thus, govern learning. Here, I present results from our study of layer 2/3 and layer 5 pyramidal neurons imaged in primary visual cortex of awake, behaving mice using two-photon calcium microscopy at both the somatic and distal apical planes. Our data reveals that individual neurons and distal apical dendrites show distinct, but predictable changes in unexpected event responses when tracked over several days. Considering existing evidence that bottom-up information is primarily targeted to somata, with distal apical dendrites receiving the bulk of top-down inputs, our findings corroborate hypothesized complementary roles for these two neuronal compartments in hierarchical computing. Altogether, our work provides novel evidence that the neocortex indeed instantiates a predictive hierarchical model in which unexpected events drive learning.
Embryonic layer 5 pyramidal neurons form earliest recurrent circuits with correlated activity
COSYNE 2023
Distinct roles of cortical layer 5 subtypes in associative learning
COSYNE 2025
Glial cells undergo rapid changes following acute chemogenetic manipulation of a subpopulation of layer 5 projection neurons
FENS Forum 2024
Specialized corticothalamic connections between the layer 5 of the frontal cortex and the thalamus
FENS Forum 2024