← Back

Learning Speed

Topic spotlight
TopicWorld Wide

learning speed

Discover seminars, jobs, and research tagged with learning speed across World Wide.
3 curated items2 Seminars1 ePoster
Updated over 4 years ago
3 items · learning speed
3 results
SeminarNeuroscienceRecording

Multitask performance humans and deep neural networks

Christopher Summerfield
University of Oxford
Nov 24, 2020

Humans and other primates exhibit rich and versatile behaviour, switching nimbly between tasks as the environmental context requires. I will discuss the neural coding patterns that make this possible in humans and deep networks. First, using deep network simulations, I will characterise two distinct solutions to task acquisition (“lazy” and “rich” learning) which trade off learning speed for robustness, and depend on the initial weights scale and network sparsity. I will chart the predictions of these two schemes for a context-dependent decision-making task, showing that the rich solution is to project task representations onto orthogonal planes on a low-dimensional embedding space. Using behavioural testing and functional neuroimaging in humans, we observe BOLD signals in human prefrontal cortex whose dimensionality and neural geometry are consistent with the rich learning regime. Next, I will discuss the problem of continual learning, showing that behaviourally, humans (unlike vanilla neural networks) learn more effectively when conditions are blocked than interleaved. I will show how this counterintuitive pattern of behaviour can be recreated in neural networks by assuming that information is normalised and temporally clustered (via Hebbian learning) alongside supervised training. Together, this work offers a picture of how humans learn to partition knowledge in the service of structured behaviour, and offers a roadmap for building neural networks that adopt similar principles in the service of multitask learning. This is work with Andrew Saxe, Timo Flesch, David Nagy, and others.

ePoster

Activity exploration influences learning speeds in models of brain-computer interfaces

Stefan Mihalas, Matthew Bull, Jacob Sacks, Marton Rozsa, Christina Wang, Karel Svoboda, Matthew Golub, Kyle Aitken, Kayvon Daie

COSYNE 2025