Life History
life history
Cognition plus longevity equals culture: A new framework for understanding human brain evolution
Narratives of human evolution have focused on cortical expansion and increases in brain size relative to body size, but considered that changes in life history, such as in age at sexual maturity and thus the extent of childhood and maternal dependence, or maximal longevity, are evolved features that appeared as consequences of selection for increased brain size, or increased cognitive abilities that decrease mortality rates, or due to selection for grandmotherly contribution to feeding the young. Here I build on my recent finding that slower life histories universally accompany increased numbers of cortical neurons across warm-blooded species to propose a simpler framework for human evolution: that slower development to sexual maturity and increased post-maturity longevity are features that do not require selection, but rather inevitably and immediately accompany evolutionary increases in numbers of cortical neurons, thus fostering human social interactions and cultural and technological evolution as generational overlap increases.
Childhood as a solution to explore-exploit tensions
I argue that the evolution of our life history, with its distinctively long, protected human childhood allows an early period of broad hypothesis search and exploration, before the demands of goal-directed exploitation set in. This cognitive profile is also found in other animals and is associated with early behaviours such as neophilia and play. I relate this developmental pattern to computational ideas about explore-exploit trade-offs, search and sampling, and to neuroscience findings. I also present several lines of new empirical evidence suggesting that young human learners are highly exploratory, both in terms of their search for external information and their search through hypothesis spaces. In fact, they are sometimes more exploratory than older learners and adults.