← Back

Lifespan

Topic spotlight
TopicWorld Wide

lifespan

Discover seminars, jobs, and research tagged with lifespan across World Wide.
28 curated items26 Seminars2 ePosters
Updated 10 months ago
28 items · lifespan
28 results
SeminarNeuroscience

CNS Control of Peripheral Mitochondrial Form and Function: Mitokines

Andy Dillin
University of California, Berkeley
Jan 27, 2025

My laboratory has made an intriguing discovery that mitochondrial stress in one tissue can be communicated to distal tissues. We find that mitochondrial stress in the nervous system triggers the production of entities known as mitokines. These mitokines are discharged from the nervous system, orchestrating a response in peripheral tissues that extends the lifespan of C. elegans. The revelation came as a surprise, given the prevalent belief that cell autonomous mechanisms would underlie the relationship between mitochondrial function and aging. It was also surprising given the prevailing dogma that mitochondrial function must be increased, not decreased, to improve health and longevity. Our work also underscores the fact that mitochondria, which originated as a microbial entity and later evolved into an intracellular symbiont, have retained their capacity for intercommunication, now facilitated by signals from the nervous system. We hypothesize that this communication has evolved as a mechanism to reduce infection from pathogens.

SeminarNeuroscienceRecording

Prosocial Learning and Motivation across the Lifespan

Patricia Lockwood
University of Birmingham, UK
Sep 9, 2024

2024 BACN Early-Career Prize Lecture Many of our decisions affect other people. Our choices can decelerate climate change, stop the spread of infectious diseases, and directly help or harm others. Prosocial behaviours – decisions that help others – could contribute to reducing the impact of these challenges, yet their computational and neural mechanisms remain poorly understood. I will present recent work that examines prosocial motivation, how willing we are to incur costs to help others, prosocial learning, how we learn from the outcomes of our choices when they affect other people, and prosocial preferences, our self-reports of helping others. Throughout the talk, I will outline the possible computational and neural bases of these behaviours, and how they may differ from young adulthood to old age.

SeminarPsychology

Exploring Lifespan Memory Development and Intervention Strategies for Memory Decline through a Unified Model-Based Assessment

Anaïs Capik
University of Washington
May 5, 2024

Understanding and potentially reversing memory decline necessitates a comprehensive examination of memory's evolution throughout life. Traditional memory assessments, however, suffer from a lack of comparability across different age groups due to the diverse nature of the tests employed. Addressing this gap, our study introduces a novel, ACT-R model-based memory assessment designed to provide a consistent metric for evaluating memory function across a lifespan, from 5 to 85-year-olds. This approach allows for direct comparison across various tasks and materials tailored to specific age groups. Our findings reveal a pronounced U-shaped trajectory of long-term memory function, with performance at age 5 mirroring those observed in elderly individuals with impairments, highlighting critical periods of memory development and decline. Leveraging this unified assessment method, we further investigate the therapeutic potential of rs-fMRI-guided TBS targeting area 8AV in individuals with early-onset Alzheimer’s Disease—a region implicated in memory deterioration and mood disturbances in this population. This research not only advances our understanding of memory's lifespan dynamics but also opens new avenues for targeted interventions in Alzheimer’s Disease, marking a significant step forward in the quest to mitigate memory decay.

SeminarNeuroscience

Making Sense of Our Senses: Multisensory Processes across the Human Lifespan

Micah Murray
University of Lausanne
Nov 5, 2023
SeminarNeuroscience

How curiosity affects learning and information seeking via the dopaminergic circuit

Matthias J. Gruber
Cardiff University, UK
Jun 12, 2023

Over the last decade, research on curiosity – the desire to seek new information – has been rapidly growing. Several studies have shown that curiosity elicits activity within the dopaminergic circuit and thereby enhances hippocampus-dependent learning. However, given this new field of research, we do not have a good understanding yet of (i) how curiosity-based learning changes across the lifespan, (ii) why some people show better learning improvements due to curiosity than others, and (iii) whether lab-based research on curiosity translates to how curiosity affects information seeking in real life. In this talk, I will present a series of behavioural and neuroimaging studies that address these three questions about curiosity. First, I will present findings on how curiosity and interest affect learning differently in childhood and adolescence. Second, I will show data on how inter-individual differences in the magnitude of curiosity-based learning depend on the strength of resting-state functional connectivity within the cortico-mesolimbic dopaminergic circuit. Third, I will present findings on how the level of resting-state functional connectivity within this circuit is also associated with the frequency of real-life information seeking (i.e., about Covid-19-related news). Together, our findings help to refine our recently proposed framework – the Prediction, Appraisal, Curiosity, and Exploration (PACE) framework – that attempts to integrate theoretical ideas on the neurocognitive mechanisms of how curiosity is elicited, and how curiosity enhances learning and information seeking. Furthermore, our findings highlight the importance of curiosity research to better understand how curiosity can be harnessed to improve learning and information seeking in real life.

SeminarPsychology

How AI is advancing Clinical Neuropsychology and Cognitive Neuroscience

Nicolas Langer
University of Zurich
May 16, 2023

This talk aims to highlight the immense potential of Artificial Intelligence (AI) in advancing the field of psychology and cognitive neuroscience. Through the integration of machine learning algorithms, big data analytics, and neuroimaging techniques, AI has the potential to revolutionize the way we study human cognition and brain characteristics. In this talk, I will highlight our latest scientific advancements in utilizing AI to gain deeper insights into variations in cognitive performance across the lifespan and along the continuum from healthy to pathological functioning. The presentation will showcase cutting-edge examples of AI-driven applications, such as deep learning for automated scoring of neuropsychological tests, natural language processing to characeterize semantic coherence of patients with psychosis, and other application to diagnose and treat psychiatric and neurological disorders. Furthermore, the talk will address the challenges and ethical considerations associated with using AI in psychological research, such as data privacy, bias, and interpretability. Finally, the talk will discuss future directions and opportunities for further advancements in this dynamic field.

SeminarNeuroscienceRecording

Fidelity and Replication: Modelling the Impact of Protocol Deviations on Effect Size

Michelle Ellefson
Faculty of Education, University of Cambridge
Feb 27, 2023

Cognitive science and cognitive neuroscience researchers have agreed that the replication of findings is important for establishing which ideas (or theories) are integral to the study of cognition across the lifespan. Recently, high-profile papers have called into question findings that were once thought to be unassailable. Much attention has been paid to how p-hacking, publication bias, and sample size are responsible for failed replications. However, much less attention has been paid to the fidelity by which researchers enact study protocols. Researchers conducting education or clinical trials are aware of the importance in fidelity – or the extent to which the protocols are delivered in the same way across participants. Nevertheless, this idea has not been applied to cognitive contexts. This seminar discusses factors that impact the replicability of findings alongside recent models suggesting that even small fidelity deviations have real impacts on the data collected.

SeminarNeuroscienceRecording

Programmed axon death: from animal models into human disease

Michael Coleman
Department of Clinical Neurosciences, University of Cambridge
Jan 30, 2023

Programmed axon death is a widespread and completely preventable mechanism in injury and disease. Mouse and Drosophila studies define a molecular pathway involving activation of SARM1 NA Dase and its prevention by NAD synthesising enzyme NMNAT2 . Loss of axonal NMNAT2 causes its substrate, NMN , to accumulate and activate SARM1 , driving loss of NAD and changes in ATP , ROS and calcium. Animal models caused by genetic mutation, toxins, viruses or metabolic defects can be alleviated by blocking programmed axon death, for example models of CMT1B , chemotherapy-induced peripheral neuropathy (CIPN), rabies and diabetic peripheral neuropathy (DPN). The perinatal lethality of NMNAT2 null mice is completely rescued, restoring a normal, healthy lifespan. Animal models lack the genetic and environmental diversity present in human populations and this is problematic for modelling gene-environment combinations, for example in CIPN and DPN , and identifying rare, pathogenic mutations. Instead, by testing human gene variants in WGS datasets for loss- and gain-of-function, we identified enrichment of rare SARM1 gain-of-function variants in sporadic ALS , despite previous negative findings in SOD1 transgenic mice. We have shown in mice that heterozygous SARM1 loss-of-function is protective from a range of axonal stresses and that naturally-occurring SARM1 loss-of-function alleles are present in human populations. This enables new approaches to identify disorders where blocking SARM1 may be therapeutically useful, and the existence of two dominant negative human variants in healthy adults is some of the best evidence available that drugs blocking SARM1 are likely to be safe. Further loss- and gain-of-function variants in SARM1 and NMNAT2 are being identified and used to extend and strengthen the evidence of association with neurological disorders. We aim to identify diseases, and specific patients, in whom SARM1 -blocking drugs are most likely to be effective.

SeminarNeuroscience

Gut Feelings: The Microbiome as a Key Regulator of Brain & Behaviour Across the Lifespan

John F. Cryan
Dept. Anatomy & Neuroscience, University College Cork
Nov 16, 2022
SeminarNeuroscience

The Synaptome Architecture of the Brain: Lifespan, disease, evolution and behavior

Seth Grant
Professor of Molecular Neuroscience, Centre for Clinical Brain Sciences, University of Edinburgh, UK
May 1, 2022

The overall aim of my research is to understand how the organisation of the synapse, with particular reference to the postsynaptic proteome (PSP) of excitatory synapses in the brain, informs the fundamental mechanisms of learning, memory and behaviour and how these mechanisms go awry in neurological dysfunction. The PSP indeed bears a remarkable burden of disease, with components being disrupted in disorders (synaptopathies) including schizophrenia, depression, autism and intellectual disability. Our work has been fundamental in revealing and then characterising the unprecedented complexity (>1000 highly conserved proteins) of the PSP in terms of the subsynaptic architecture of postsynaptic proteins such as PSD95 and how these proteins assemble into complexes and supercomplexes in different neurons and regions of the brain. Characterising the PSPs in multiple species, including human and mouse, has revealed differences in key sets of functionally important proteins, correlates with brain imaging and connectome data, and a differential distribution of disease-relevant proteins and pathways. Such studies have also provided important insight into synapse evolution, establishing that vertebrate behavioural complexity is a product of the evolutionary expansion in synapse proteomes that occurred ~500 million years ago. My lab has identified many mutations causing cognitive impairments in mice before they were found to cause human disorders. Our proteomic studies revealed that >130 brain diseases are caused by mutations affecting postsynaptic proteins. We uncovered mechanisms that explain the polygenic basis and age of onset of schizophrenia, with postsynaptic proteins, including PSD95 supercomplexes, carrying much of the polygenic burden. We discovered the “Genetic Lifespan Calendar”, a genomic programme controlling when genes are regulated. We showed that this could explain how schizophrenia susceptibility genes are timed to exert their effects in young adults. The Genes to Cognition programme is the largest genetic study so far undertaken into the synaptic molecular mechanisms underlying behaviour and physiology. We made important conceptual advances that inform how the repertoire of both innate and learned behaviours is built from unique combinations of postsynaptic proteins that either amplify or attenuate the behavioural response. This constitutes a key advance in understanding how the brain decodes information inherent in patterns of nerve impulses, and provides insight into why the PSP has evolved to be so complex, and consequently why the phenotypes of synaptopathies are so diverse. Our most recent work has opened a new phase, and scale, in understanding synapses with the first synaptome maps of the brain. We have developed next-generation methods (SYNMAP) that enable single-synapse resolution molecular mapping across the whole mouse brain and extensive regions of the human brain, revealing the molecular and morphological features of a billion synapses. This has already uncovered unprecedented spatiotemporal synapse diversity organised into an architecture that correlates with the structural and functional connectomes, and shown how mutations that cause cognitive disorders reorganise these synaptome maps; for example, by detecting vulnerable synapse subtypes and synapse loss in Alzheimer’s disease. This innovative synaptome mapping technology has huge potential to help characterise how the brain changes during normal development, including in specific cell types, and with degeneration, facilitating novel pathways to diagnosis and therapy.

SeminarNeuroscience

Brain chart for the human lifespan

Richard Bethlehem
Director of Neuroimaging, Autism Research Centre, University of Cambridge, United Kingdom
Jan 18, 2022

Over the past few decades, neuroimaging has become a ubiquitous tool in basic research and clinical studies of the human brain. However, no reference standards currently exist to quantify individual differences in neuroimaging metrics over time, in contrast to growth charts for anthropometric traits such as height and weight. Here, we built an interactive resource to benchmark brain morphology, www.brainchart.io, derived from any current or future sample of magnetic resonance imaging (MRI) data. With the goal of basing these reference charts on the largest and most inclusive dataset available, we aggregated 123,984 MRI scans from 101,457 participants aged from 115 days post-conception through 100 postnatal years, across more than 100 primary research studies. Cerebrum tissue volumes and other global or regional MRI metrics were quantified by centile scores, relative to non-linear trajectories of brain structural changes, and rates of change, over the lifespan. Brain charts identified previously unreported neurodevelopmental milestones; showed high stability of individual centile scores over longitudinal assessments; and demonstrated robustness to technical and methodological differences between primary studies. Centile scores showed increased heritability compared to non-centiled MRI phenotypes, and provided a standardised measure of atypical brain structure that revealed patterns of neuroanatomical variation across neurological and psychiatric disorders. In sum, brain charts are an essential first step towards robust quantification of individual deviations from normative trajectories in multiple, commonly-used neuroimaging phenotypes. Our collaborative study proves the principle that brain charts are achievable on a global scale over the entire lifespan, and applicable to analysis of diverse developmental and clinical effects on human brain structure.

SeminarNeuroscienceRecording

What happens to our ability to perceive multisensory information as we age?

Fiona Newell
Trinity Collge Dublin
Jan 12, 2022

Our ability to perceive the world around us can be affected by a number of factors including the nature of the external information, prior experience of the environment, and the integrity of the underlying perceptual system. A particular challenge for the brain is to maintain a coherent perception from information encoded by the peripheral sensory organs whose function is affected by typical, developmental changes across the lifespan. Yet, how the brain adapts to the maturation of the senses, as well as experiential changes in the multisensory environment, is poorly understood. Over the past few years, we have used a range of multisensory tasks to investigate the role of ageing on the brain’s ability to merge sensory inputs. In particular, we have embedded an audio-visual task based on the sound-induced flash illusion (SIFI) into a large-scale, longitudinal study of ageing. Our findings support the idea that the temporal binding window (TBW) is modulated by age and reveal important individual differences in this TBW that may have clinical implications. However, our investigations also suggest the TWB is experience-dependent with evidence for both long and short term behavioural plasticity. An overview of these findings, including recent evidence on how multisensory integration may be associated with higher order functions, will be discussed.

SeminarNeuroscience

Roles of microglia in the pathogenesis of neurodegeneration

Rosa C. Paolicelli
University of Lausanne
Jun 16, 2021

Microglia are implicated in a variety of functions in the central nervous system, ranging from shaping neural circuits during early brain development, to surveying the brain parenchyma, and providing trophic support to neurons across the entire lifespan. In neurodegeneration, microglia have been considered for long time mere bystanders, accompanying and worsening neuronal damage. However, recent evidence indicates that microglia can causally contribute to neurodegenerative diseases, and that their dysfunction can even be at the origin of the pathology. In fact, the broad range of physiological roles microglia play in the healthy brain suggest that faulty microglia can initiate neurodegeneration through several possible mechanisms. In particular, in this seminar, we will discuss how dysfunctional microglia can affect synaptic function leading to pathological synapse loss, thus putting microglia center stage in the pathogenesis of brain disorders.

SeminarNeuroscience

Neural correlates of cognitive control across the adult lifespan

Cheryl Grady
May 26, 2021

Cognitive control involves the flexible allocation of mental resources during goal-directed behaviour and comprises three correlated but distinct domains—inhibition, task shifting, and working memory. Healthy ageing is characterised by reduced cognitive control. Professor Cheryl Grady and her team have been studying the influence of age differences in large-scale brain networks on the three control processes in a sample of adults from 20 to 86 years of age. In this webinar, Professor Cheryl Grady will describe three aspects of this work: 1) age-related dedifferentiation and reconfiguration of brain networks across the sub-domains 2) individual differences in the relation of task-related activity to age, structural integrity and task performance for each sub-domain 3) modulation of brain signal variability as a function of cognitive load and age during working memory. This research highlights the reduction in dynamic range of network activity that occurs with ageing and how this contributes to age differences in cognitive control. Cheryl Grady is a senior scientist at the Rotman Research Institute at Baycrest, and Professor in the departments of Psychiatry and Psychology at the University of Toronto. She held the Canada Research Chair in Neurocognitive Aging from 2005-2018 and was elected as a Fellow of the Royal Society of Canada in 2019. Her research uses MRI to determine the role of brain network connectivity in cognitive ageing.

SeminarNeuroscience

Fragility of the human connectome across the lifespan

Leonardo Gollo and James Pang
Monash Biomedical Imaging
May 12, 2021

The human brain network architecture can reveal crucial aspects of brain function and dysfunction. The topology of this network (known as the connectome) is shaped by a trade-off between wiring cost and network efficiency, and it has highly connected hub regions playing a prominent role in many brain disorders. By studying a landscape of plausible brain networks that preserve the wiring cost, fragile and resilient hubs can be identified. In this webinar, Dr Leonardo Gollo and Dr James Pang from Monash University will discuss this approach across the lifespan and some of its implications for neurodevelopmental and neurodegenerative diseases. Dr Leonardo Gollo is a Senior Research Fellow at the Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University. He holds an ARC Future Fellowship and his research interests include brain modelling, systems neuroscience, and connectomics. Dr James Pang is a Research Fellow at the Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University. His research interests are on combining neuroimaging and biophysical modelling to better understand the mechanisms of brain function in health and disease.

SeminarNeuroscience

The Impact of Racism-related Stress on Neurobiological Systems in Black Americans”

Negar Fani
Emory University
Apr 8, 2021

Black Americans experience diverse racism-related stressors throughout the lifespan. Disproportionately high trauma exposure, economic disadvantage, explicit racism and inequitable treatment are stressors faced by many Black Americans. These experiences have a cumulative negative impact on psychological and physical health. However, little is understood about how experiences of racism, such as discrimination, can mediate health outcomes via their effects on neurobiology. I will present clinical, behavioral, physiological and neurobiological data from Black American participants in the Grady Trauma Project, a longstanding study of trauma conducted in inner-city Atlanta. These data will be discussed in the context of both risk and resilience/adaptation perspectives. Finally, recommendations for future clinical neuroscience research and targets for intervention in marginalized populations will be discussed.

SeminarNeuroscience

Gut Feelings: The Microbiota-Gut-Brain Axis Across the Lifespan

John Cryan
University College Cork
Mar 21, 2021

The microbiota-gut-brain axis is emerging as a research area of increasing interest for those investigating the biological and physiological basis of brain development and behaviour during early life, adolescence & ageing. The routes of communication between the gut and brain include the vagus nerve, the immune system, tryptophan metabolism, via the enteric nervous system or by way of microbial metabolites such as short chain fatty acids. Studies in animal models have shown that the development of an appropriate stress response is dependent on the microbiota. Developmentally, a variety of factors can impact the microbiota in early life including mode of birth delivery, antibiotic exposure, mode of nutritional provision, infection, stress as well as host genetics. Recently, the gut microbiota has been implicated in regulating the stress response, and social behaviour. Moreover, fundamental brain processes from adult hippocampal neurogenesis to myelination to microglia activation have been shown to be regulated by the microbiome. Further studies will focus on understanding the mechanisms underlying such brain effects and how they can be exploited by microbiota-targeted interventions including ‘psychobiotics’ and diet

SeminarNeuroscience

Sleep features for memory consolidation and network building across the lifespan

Gina Poe
University of California, Los Angeles, Integrative Biology & Physiology
Dec 15, 2020
SeminarNeuroscience

Defining new multimodal neuroimaging marker for grey matter characterization

Fabrice Crivello
Institut des Maladies Neurodégénératives - CNRS UMR 5293 - Université de bordeaux
Dec 13, 2020

The human cortical ribbon varies during the lifespan, from childhood to senescence. To study the effects of genetic and environmental factors on these dynamics, one needs to measure specific phenotypes (cortical volume, surface area, thickness, new neuroimaging phenotypes such as intracortical myelination or multimodal ones based on their combination, or their asymmetries) that characterize the cerebral grey matter accurately

SeminarNeuroscienceRecording

Towards resolving the Protein Paradox in longevity and late-life health

Stephen J. Simpson
University of Sydney
Sep 6, 2020

Reducing protein intake (and that of key amino acids) extends lifespan, especially during mid-life and early late-life. Yet, due to a powerful protein appetite, reducing protein in the diet leads to increased food intake, promoting obesity – which shortens lifespan. That is the protein paradox. In the talk I will bring together pieces of the jigsaw, including: specific nutrient appetites, protein leverage, macronutrient interactions on appetite and ageing, the role of branched-chain amino acids and FGF-21, and then I will conclude by showing how these pieces fit together and play out in the modern industrialised food environment to result in the global pandemic of obesity and metabolic disease.

SeminarNeuroscience

Why We Need a Lifespan Approach to Developmental Change

Ulman Lindenberger
Max Planck Institute for Human Development
Aug 5, 2020
SeminarNeuroscience

Lifespan Maintenance of Brain and Cognition - Fiction or Science

Lars Nyberg
Umea University
Jul 1, 2020
ePoster

Impairment of AgRP neurons influences body weight, lifespan, and behavior in calorie-restricted mice

Eszter Balkó, Mátyás Kapiller, Boglárka Barsy, Ferenc Matyas, Peter Sotonyi, Tamas L. Horvath, Bence Racz

FENS Forum 2024

ePoster

Microstructure of sleep and sleep oscillation dynamics across the lifespan

Solomiia Korchynska, Brijesh Modi, Eis Annavini, Lina Okinina, Charlotte Nina Boccara

FENS Forum 2024