← Back

Linear Modeling

Topic spotlight
TopicWorld Wide

linear modeling

Discover seminars, jobs, and research tagged with linear modeling across World Wide.
2 curated items2 Seminars
Updated about 3 years ago
2 items · linear modeling
2 results
SeminarNeuroscienceRecording

Network inference via process motifs for lagged correlation in linear stochastic processes

Alice Schwarze
Dartmouth College
Nov 16, 2022

A major challenge for causal inference from time-series data is the trade-off between computational feasibility and accuracy. Motivated by process motifs for lagged covariance in an autoregressive model with slow mean-reversion, we propose to infer networks of causal relations via pairwise edge measure (PEMs) that one can easily compute from lagged correlation matrices. Motivated by contributions of process motifs to covariance and lagged variance, we formulate two PEMs that correct for confounding factors and for reverse causation. To demonstrate the performance of our PEMs, we consider network interference from simulations of linear stochastic processes, and we show that our proposed PEMs can infer networks accurately and efficiently. Specifically, for slightly autocorrelated time-series data, our approach achieves accuracies higher than or similar to Granger causality, transfer entropy, and convergent crossmapping -- but with much shorter computation time than possible with any of these methods. Our fast and accurate PEMs are easy-to-implement methods for network inference with a clear theoretical underpinning. They provide promising alternatives to current paradigms for the inference of linear models from time-series data, including Granger causality, vector-autoregression, and sparse inverse covariance estimation.

SeminarNeuroscienceRecording

NMC4 Short Talk: Two-Photon Imaging of Norepinephrine in the Prefrontal Cortex Shows that Norepinephrine Structures Cell Firing Through Local Release

Samira Glaeser-Khan
Yale University
Dec 2, 2021

Norepinephrine (NE) is a neuromodulator that is released from projections of the locus coeruleus via extra-synaptic vesicle exocytosis. Tonic fluctuations in NE are involved in brain states, such as sleep, arousal, and attention. Previously, NE in the PFC was thought to be a homogenous field created by bulk release, but it remains unknown whether phasic (fast, short-term) fluctuations in NE can produce a spatially heterogeneous field, which could then structure cell firing at a fine spatial scale. To understand how spatiotemporal dynamics of norepinephrine (NE) release in the prefrontal cortex affect neuronal firing, we performed a novel in-vivo two-photon imaging experiment in layer ⅔ of the prefrontal cortex using a green fluorescent NE sensor and a red fluorescent Ca2+ sensor, which allowed us to simultaneously observe fine-scale neuronal and NE dynamics in the form of spatially localized fluorescence time series. Using generalized linear modeling, we found that the local NE field differs from the global NE field in transient periods of decorrelation, which are influenced by proximal NE release events. We used optical flow and pattern analysis to show that release and reuptake events can occur at the same location but at different times, and differential recruitment of release and reuptake sites over time is a potential mechanism for creating a heterogeneous NE field. Our generalized linear models predicting cellular dynamics show that the heterogeneous local NE field, and not the global field, drives cell firing dynamics. These results point to the importance of local, small-scale, phasic NE fluctuations for structuring cell firing. Prior research suggests that these phasic NE fluctuations in the PFC may play a role in attentional shifts, orienting to sensory stimuli in the environment, and in the selective gain of priority representations during stress (Mather, Clewett et al. 2016) (Aston-Jones and Bloom 1981).