← Back

Longevity

Topic spotlight
TopicWorld Wide

longevity

Discover seminars, jobs, and research tagged with longevity across World Wide.
4 curated items4 Seminars
Updated 10 months ago
4 items · longevity
4 results
SeminarNeuroscienceRecording

Cognition plus longevity equals culture: A new framework for understanding human brain evolution

Suzana Herculano-Houzel
Vanderbilt University
Dec 3, 2020

Narratives of human evolution have focused on cortical expansion and increases in brain size relative to body size, but considered that changes in life history, such as in age at sexual maturity and thus the extent of childhood and maternal dependence, or maximal longevity, are evolved features that appeared as consequences of selection for increased brain size, or increased cognitive abilities that decrease mortality rates, or due to selection for grandmotherly contribution to feeding the young. Here I build on my recent finding that slower life histories universally accompany increased numbers of cortical neurons across warm-blooded species to propose a simpler framework for human evolution: that slower development to sexual maturity and increased post-maturity longevity are features that do not require selection, but rather inevitably and immediately accompany evolutionary increases in numbers of cortical neurons, thus fostering human social interactions and cultural and technological evolution as generational overlap increases.

SeminarNeuroscienceRecording

Transposable element activation in Alzheimer's disease and related tauopathies

Bess Frost
Barshop Institute for Longevity and Aging Studies
Sep 30, 2020

Transposable elements, known colloquially as ‘jumping genes’, constitute approximately 45% of the human genome. Cells utilize epigenetic defenses to limit transposable element jumping, including formation of silencing heterochromatin and generation of piwi-interacting RNAs (piRNAs), small RNAs that facilitate clearance of transposable element transcripts. We have utilized fruit flies, mice and postmortem human brain samples to identify transposable element dysregulation as a key mediator of neuronal death in tauopathies, a group of neurodegenerative disorders that are pathologically characterized by deposits of tau protein in the brain. Mechanistically, we find that heterochromatin decondensation and reduction of piwi and piRNAs drive transposable element dysregulation in tauopathy. We further report a significant increase in transcripts of the endogenous retrovirus class of transposable elements in human Alzheimer’s disease and progressive supranuclear palsy, suggesting that transposable element dysregulation is conserved in human tauopathy. Taken together, our data identify heterochromatin decondensation, piwi and piRNA depletion and consequent transposable element dysregulation as a pharmacologically targetable, mechanistic driver of neurodegeneration in tauopathy.

SeminarNeuroscienceRecording

Towards resolving the Protein Paradox in longevity and late-life health

Stephen J. Simpson
University of Sydney
Sep 6, 2020

Reducing protein intake (and that of key amino acids) extends lifespan, especially during mid-life and early late-life. Yet, due to a powerful protein appetite, reducing protein in the diet leads to increased food intake, promoting obesity – which shortens lifespan. That is the protein paradox. In the talk I will bring together pieces of the jigsaw, including: specific nutrient appetites, protein leverage, macronutrient interactions on appetite and ageing, the role of branched-chain amino acids and FGF-21, and then I will conclude by showing how these pieces fit together and play out in the modern industrialised food environment to result in the global pandemic of obesity and metabolic disease.