Low Cost
Low Cost
GuPPy, a Python toolbox for the analysis of fiber photometry data
Fiber photometry (FP) is an adaptable method for recording in vivo neural activity in freely behaving animals. It has become a popular tool in neuroscience due to its ease of use, low cost, the ability to combine FP with freely moving behavior, among other advantages. However, analysis of FP data can be a challenge for new users, especially those with a limited programming background. Here, we present Guided Photometry Analysis in Python (GuPPy), a free and open-source FP analysis tool. GuPPy is provided as a Jupyter notebook, a well-commented interactive development environment (IDE) designed to operate across platforms. GuPPy presents the user with a set of graphic user interfaces (GUIs) to load data and provide input parameters. Graphs produced by GuPPy can be exported into various image formats for integration into scientific figures. As an open-source tool, GuPPy can be modified by users with knowledge of Python to fit their specific needs.
Neuroscience tools for the 99%: On the low-fi development of high-tech lab gear for hands-on neuroscience labs and exploratory research
The public has a fascination with the brain, but little attention is given to neuroscience education prior to graduate studies in brain-related fields. One reason may be the lack of low cost and engaging teaching materials. To address this, we have developed a suite of open-source tools which are appropriate for amateurs and for use in high school, undergraduate, and graduate level educational and research programs. This lecture will provide an overview of our mission to re-engineer research-grade lab equipment using first principles and will highlight basic principles of neuroscience in a "DIY" fashion: neurophysiology, functional electrical stimulation, micro-stimulation effect on animal behavior, neuropharmacology, even neuroprosthesis and optogenetics! Finally, with faculty academic positions becoming a scarce resource, I will discuss an alternative academic career path: entrepreneurship. It is possible to be an academic, do research, publish papers, present at conferences and train students all outside the traditional university setting. I will close by discussing my career path from graduate student to PI/CEO of a startup neuroscience company.