Low Dimensional
Low Dimensional
The strongly recurrent regime of cortical networks
Modern electrophysiological recordings simultaneously capture single-unit spiking activities of hundreds of neurons. These neurons exhibit highly complex coordination patterns. Where does this complexity stem from? One candidate is the ubiquitous heterogeneity in connectivity of local neural circuits. Studying neural network dynamics in the linearized regime and using tools from statistical field theory of disordered systems, we derive relations between structure and dynamics that are readily applicable to subsampled recordings of neural circuits: Measuring the statistics of pairwise covariances allows us to infer statistical properties of the underlying connectivity. Applying our results to spontaneous activity of macaque motor cortex, we find that the underlying network operates in a strongly recurrent regime. In this regime, network connectivity is highly heterogeneous, as quantified by a large radius of bulk connectivity eigenvalues. Being close to the point of linear instability, this dynamical regime predicts a rich correlation structure, a large dynamical repertoire, long-range interaction patterns, relatively low dimensionality and a sensitive control of neuronal coordination. These predictions are verified in analyses of spontaneous activity of macaque motor cortex and mouse visual cortex. Finally, we show that even microscopic features of connectivity, such as connection motifs, systematically scale up to determine the global organization of activity in neural circuits.
Becoming what you smell: adaptive sensing in the olfactory system
I will argue that the circuit architecture of the early olfactory system provides an adaptive, efficient mechanism for compressing the vast space of odor mixtures into the responses of a small number of sensors. In this view, the olfactory sensory repertoire employs a disordered code to compress a high dimensional olfactory space into a low dimensional receptor response space while preserving distance relations between odors. The resulting representation is dynamically adapted to efficiently encode the changing environment of volatile molecules. I will show that this adaptive combinatorial code can be efficiently decoded by systematically eliminating candidate odorants that bind to silent receptors. The resulting algorithm for 'estimation by elimination' can be implemented by a neural network that is remarkably similar to the early olfactory pathway in the brain. Finally, I will discuss how diffuse feedback from the central brain to the bulb, followed by unstructured projections back to the cortex, can produce the convergence and divergence of the cortical representation of odors presented in shared or different contexts. Our theory predicts a relation between the diversity of olfactory receptors and the sparsity of their responses that matches animals from flies to humans. It also predicts specific deficits in olfactory behavior that should result from optogenetic manipulation of the olfactory bulb and cortex, and in some disease states.
Understanding Perceptual Priors with Massive Online Experiments
One of the most important questions in psychology and neuroscience is understanding how the outside world maps to internal representations. Classical psychophysics approaches to this problem have a number of limitations: they mostly study low dimensional perpetual spaces, and are constrained in the number and diversity of participants and experiments. As ecologically valid perception is rich, high dimensional, contextual, and culturally dependent, these impediments severely bias our understanding of perceptual representations. Recent technological advances—the emergence of so-called “Virtual Labs”— can significantly contribute toward overcoming these barriers. Here I present a number of specific strategies that my group has developed in order to probe representations across a number of dimensions. 1) Massive online experiments can increase significantly the amount of participants and experiments that can be carried out in a single study, while also significantly diversifying the participant pool. We have developed a platform, PsyNet, that enables “experiments as code,” whereby the orchestration of computer servers, recruiting, compensation of participants, and data management is fully automated and every experiment can be fully replicated with one command line. I will demonstrate how PsyNet allows us to recruit thousands of participants for each study with a large number of control experimental conditions, significantly increasing our understanding of auditory perception. 2) Virtual lab methods also enable us to run experiments that are nearly impossible in a traditional lab setting. I will demonstrate our development of adaptive sampling, a set of behavioural methods that combine machine learning sampling techniques (Monte Carlo Markov Chains) with human interactions and allow us to create high-dimensional maps of perceptual representations with unprecedented resolution. 3) Finally, I will demonstrate how the aforementioned methods can be applied to the study of perceptual priors in both audition and vision, with a focus on our work in cross-cultural research, which studies how perceptual priors are influenced by experience and culture in diverse samples of participants from around the world.
Higher cognitive resources for efficient learning
A central issue in reinforcement learning (RL) is the ‘curse-of-dimensionality’, arising when the degrees-of-freedom are much larger than the number of training samples. In such circumstances, the learning process becomes too slow to be plausible. In the brain, higher cognitive functions (such as abstraction or metacognition) may be part of the solution by generating low dimensional representations on which RL can operate. In this talk I will discuss a series of studies in which we used functional magnetic resonance imaging (fMRI) and computational modeling to investigate the neuro-computational basis of efficient RL. We found that people can learn remarkably complex task structures non-consciously, but also that - intriguingly - metacognition appears tightly coupled to this learning ability. Furthermore, when people use an explicit (conscious) policy to select relevant information, learning is accelerated by abstractions. At the neural level, prefrontal cortex subregions are differentially involved in separate aspects of learning: dorsolateral prefrontal cortex pairs with metacognitive processes, while ventromedial prefrontal cortex with valuation and abstraction. I will discuss the implications of these findings, in particular new questions on the function of metacognition in adaptive behavior and the link with abstraction.
Low Dimensional Manifolds for Neural Dynamics
The ability to simultaneously record the activity from tens to thousands to tens of thousands of neurons has allowed us to analyze the computational role of population activity as opposed to single neuron activity. Recent work on a variety of cortical areas suggests that neural function may be built on the activation of population-wide activity patterns, the neural modes, rather than on the independent modulation of individual neural activity. These neural modes, the dominant covariation patterns within the neural population, define a low dimensional neural manifold that captures most of the variance in the recorded neural activity. We refer to the time-dependent activation of the neural modes as their latent dynamics. As an example, we focus on the ability to execute learned actions in a reliable and stable manner. We hypothesize that the ability to perform a given behavior in a consistent manner requires that the latent dynamics underlying the behavior also be stable. The stable latent dynamics, once identified, allows for the prediction of various behavioral features, using models whose parameters remain fixed throughout long timespans. We posit that latent cortical dynamics within the manifold are the fundamental and stable building blocks underlying consistent behavioral execution.
Neuronal variability and spatiotemporal dynamics in cortical network models
Neuronal variability is a reflection of recurrent circuitry and cellular physiology. The modulation of neuronal variability is a reliable signature of cognitive and processing state. A pervasive yet puzzling feature of cortical circuits is that despite their complex wiring, population-wide shared spiking variability is low dimensional with all neurons fluctuating en masse. We show that the spatiotemporal dynamics in a spatially structured network produce large population-wide shared variability. When the spatial and temporal scales of inhibitory coupling match known physiology, model spiking neurons naturally generate low dimensional shared variability that captures in vivo population recordings along the visual pathway. Further, we show that firing rate models with spatial coupling can also generate chaotic and low-dimensional rate dynamics. The chaotic parameter region expands when the network is driven by correlated noisy inputs, while being insensitive to the intensity of independent noise.
Low Dimensional Manifolds for Neural Dynamics
The ability to simultaneously record the activity from tens to thousands and maybe even tens of thousands of neurons has allowed us to analyze the computational role of population activity as opposed to single neuron activity. Recent work on a variety of cortical areas suggests that neural function may be built on the activation of population-wide activity patterns, the neural modes, rather than on the independent modulation of individual neural activity. These neural modes, the dominant covariation patterns within the neural population, define a low dimensional neural manifold that captures most of the variance in the recorded neural activity. We refer to the time-dependent activation of the neural modes as their latent dynamics, and argue that latent cortical dynamics within the manifold are the fundamental and stable building blocks of neural population activity.
Low dimensional models and electrophysiological experiments to study neural dynamics in songbirds
Birdsong emerges when a set of highly interconnected brain areas manage to generate a complex output. The similarities between birdsong production and human speech have positioned songbirds as unique animal models for studying learning and production of this complex motor skill. In this work, we developed a low dimensional model for a neural network in which the variables were the average activities of different neural populations within the nuclei of the song system. This neural network is active during production, perception and learning of birdsong. We performed electrophysiological experiments to record neural activity from one of these nuclei and found that the low dimensional model could reproduce the neural dynamics observed during the experiments. Also, this model could reproduce the respiratory motor patterns used to generate song. We showed that sparse activity in one of the neural nuclei could drive a more complex activity downstream in the neural network. This interdisciplinary work shows how low dimensional neural models can be a valuable tool for studying the emergence of complex motor tasks
Using evolutionary algorithms to explore single-cell heterogeneity and microcircuit operation in the hippocampus
The hippocampus-entorhinal system is critical for learning and memory. Recent cutting-edge single-cell technologies from RNAseq to electrophysiology are disclosing a so far unrecognized heterogeneity within the major cell types (1). Surprisingly, massive high-throughput recordings of these very same cells identify low dimensional microcircuit dynamics (2,3). Reconciling both views is critical to understand how the brain operates. " "The CA1 region is considered high in the hierarchy of the entorhinal-hippocampal system. Traditionally viewed as a single layered structure, recent evidence has disclosed an exquisite laminar organization across deep and superficial pyramidal sublayers at the transcriptional, morphological and functional levels (1,4,5). Such a low-dimensional segregation may be driven by a combination of intrinsic, biophysical and microcircuit factors but mechanisms are unknown." "Here, we exploit evolutionary algorithms to address the effect of single-cell heterogeneity on CA1 pyramidal cell activity (6). First, we developed a biophysically realistic model of CA1 pyramidal cells using the Hodgkin-Huxley multi-compartment formalism in the Neuron+Python platform and the morphological database Neuromorpho.org. We adopted genetic algorithms (GA) to identify passive, active and synaptic conductances resulting in realistic electrophysiological behavior. We then used the generated models to explore the functional effect of intrinsic, synaptic and morphological heterogeneity during oscillatory activities. By combining results from all simulations in a logistic regression model we evaluated the effect of up/down-regulation of different factors. We found that muyltidimensional excitatory and inhibitory inputs interact with morphological and intrinsic factors to determine a low dimensional subset of output features (e.g. phase-locking preference) that matches non-fitted experimental data.
Neural manifolds for the stable control of movement
Animals perform learned actions with remarkable consistency for years after acquiring a skill. What is the neural correlate of this stability? We explore this question from the perspective of neural populations. Recent work suggests that the building blocks of neural function may be the activation of population-wide activity patterns: neural modes that capture the dominant co-variation patterns of population activity and define a task specific low dimensional neural manifold. The time-dependent activation of the neural modes results in latent dynamics. We hypothesize that the latent dynamics associated with the consistent execution of a behaviour need to remain stable, and use an alignment method to establish this stability. Once identified, stable latent dynamics allow for the prediction of various behavioural features via fixed decoder models. We conclude that latent cortical dynamics within the task manifold are the fundamental and stable building blocks underlying consistent behaviour.
Efficient learning of low dimensional latent dynamics in multiscale spiking and LFP population activity
COSYNE 2022
Local low dimensionality is all you need
COSYNE 2022
Local low dimensionality is all you need
COSYNE 2022