← Back

Machine Vision

Topic spotlight
TopicWorld Wide

machine vision

Discover seminars, jobs, and research tagged with machine vision across World Wide.
7 curated items4 Positions3 Seminars
Updated 1 day ago
7 items · machine vision
7 results
Position

I-Chun Lin, PhD

Gatsby Computational Neuroscience Unit, UCL
Gatsby Computational Neuroscience Unit, UCL
Dec 5, 2025

The Gatsby Computational Neuroscience Unit is a leading research centre focused on theoretical neuroscience and machine learning. We study (un)supervised and reinforcement learning in brains and machines; inference, coding and neural dynamics; Bayesian and kernel methods, and deep learning; with applications to the analysis of perceptual processing and cognition, neural data, signal and image processing, machine vision, network data and nonparametric hypothesis testing. The Unit provides a unique opportunity for a critical mass of theoreticians to interact closely with one another and with researchers at the Sainsbury Wellcome Centre for Neural Circuits and Behaviour (SWC), the Centre for Computational Statistics and Machine Learning (CSML) and related UCL departments such as Computer Science; Statistical Science; Artificial Intelligence; the ELLIS Unit at UCL; Neuroscience; and the nearby Alan Turing and Francis Crick Institutes. Our PhD programme provides a rigorous preparation for a research career. Students complete a 4-year PhD in either machine learning or theoretical/computational neuroscience, with minor emphasis in the complementary field. Courses in the first year provide a comprehensive introduction to both fields and systems neuroscience. Students are encouraged to work and interact closely with SWC/CSML researchers to take advantage of this uniquely multidisciplinary research environment.

Position

I-Chun Lin

Gatsby Computational Neuroscience Unit, UCL
Gatsby Computational Neuroscience Unit, UCL
Dec 5, 2025

The Gatsby Computational Neuroscience Unit is a leading research centre focused on theoretical neuroscience and machine learning. We study (un)supervised and reinforcement learning in brains and machines; inference, coding and neural dynamics; Bayesian and kernel methods, and deep learning; with applications to the analysis of perceptual processing and cognition, neural data, signal and image processing, machine vision, network data and nonparametric hypothesis testing. The Unit provides a unique opportunity for a critical mass of theoreticians to interact closely with one another and with researchers at the Sainsbury Wellcome Centre for Neural Circuits and Behaviour (SWC), the Centre for Computational Statistics and Machine Learning (CSML) and related UCL departments such as Computer Science; Statistical Science; Artificial Intelligence; the ELLIS Unit at UCL; Neuroscience; and the nearby Alan Turing and Francis Crick Institutes. Our PhD programme provides a rigorous preparation for a research career. Students complete a 4-year PhD in either machine learning or theoretical/computational neuroscience, with minor emphasis in the complementary field. Courses in the first year provide a comprehensive introduction to both fields and systems neuroscience. Students are encouraged to work and interact closely with SWC/CSML researchers to take advantage of this uniquely multidisciplinary research environment.

SeminarNeuroscience

Using machine vision and learning to analyze animal behavior

Kristin Branson
Janelia Research Campus
May 19, 2021
SeminarPsychology

Exploring Memories of Scenes

Nico Broers
Westfälische Wilhelms-Universität Münster
Mar 24, 2021

State-of-the-art machine vision models can predict human recognition memory for complex scenes with astonishing accuracy. In this talk I present work that investigated how memorable scenes are actually remembered and experienced by human observers. We found that memorable scenes were recognized largely based on recollection of specific episodic details but also based on familiarity for an entire scene. I thus highlight current limitations in machine vision models emulating human recognition memory, with promising opportunities for future research. Moreover, we were interested in what observers specifically remember about complex scenes. We thus considered the functional role of eye-movements as a window into the content of memories, particularly when observers recollected specific information about a scene. We found that when observers formed a memory representation that they later recollected (compared to scenes that only felt familiar), the overall extent of exploration was broader, with a specific subset of fixations clustered around later to-be-recollected scene content, irrespective of the memorability of a scene. I discuss the critical role that our viewing behavior plays in visual memory formation and retrieval and point to potential implications for machine vision models predicting the content of human memories.

SeminarNeuroscienceRecording

How do humans recognise faces? Insights from biological and artificial face recognition systems

Galit Yovel
Tel Aviv Univ.
Mar 1, 2021