Material Properties
material properties
Computational models and experimental methods for the human cornea
The eye is a multi-component biological system, where mechanics, optics, transport phenomena and chemical reactions are strictly interlaced, characterized by the typical bio-variability in sizes and material properties. The eye’s response to external action is patient-specific and it can be predicted only by a customized approach, that accounts for the multiple physics and for the intrinsic microstructure of the tissues, developed with the aid of forefront means of computational biomechanics. Our activity in the last years has been devoted to the development of a comprehensive model of the cornea that aims at being entirely patient-specific. While the geometrical aspects are fully under control, given the sophisticated diagnostic machinery able to provide a fully three-dimensional images of the eye, the major difficulties are related to the characterization of the tissues, which require the setup of in-vivo tests to complement the well documented results of in-vitro tests. The interpretation of in-vivo tests is very complex, since the entire structure of the eye is involved and the characterization of the single tissue is not trivial. The availability of micromechanical models constructed from detailed images of the eye represents an important support for the characterization of the corneal tissues, especially in the case of pathologic conditions. In this presentation I will provide an overview of the research developed in our group in terms of computational models and experimental approaches developed for the human cornea.
Learning to see stuff
Humans are very good at visually recognizing materials and inferring their properties. Without touching surfaces, we can usually tell what they would feel like, and we enjoy vivid visual intuitions about how they typically behave. This is impressive because the retinal image that the visual system receives as input is the result of complex interactions between many physical processes. Somehow the brain has to disentangle these different factors. I will present some recent work in which we show that an unsupervised neural network trained on images of surfaces spontaneously learns to disentangle reflectance, lighting and shape. However, the disentanglement is not perfect, and we find that as a result the network not only predicts the broad successes of human gloss perception, but also the specific pattern of errors that humans exhibit on an image-by-image basis. I will argue this has important implications for thinking about appearance and vision more broadly.
Odd dynamics of living chiral crystals
The emergent dynamics exhibited by collections of living organisms often shows signatures of symmetries that are broken at the single-organism level. At the same time, organism development itself encompasses a well-coordinated sequence of symmetry breaking events that successively transform a single, nearly isotropic cell into an animal with well-defined body axis and various anatomical asymmetries. Combining these key aspects of collective phenomena and embryonic development, we describe here the spontaneous formation of hydrodynamically stabilized active crystals made of hundreds of starfish embryos that gather during early development near fluid surfaces. We describe a minimal hydrodynamic theory that is fully parameterized by experimental measurements of microscopic interactions among embryos. Using this theory, we can quantitatively describe the stability, formation and rotation of crystals and rationalize the emergence of mechanical properties that carry signatures of an odd elastic material. Our work thereby quantitatively connects developmental symmetry breaking events on the single-embryo level with remarkable macroscopic material properties of a novel living chiral crystal system.
Tissue fluidization at the onset of zebrafish gastrulation
Embryo morphogenesis is impacted by dynamic changes in tissue material properties, which have been proposed to occur via processes akin phase transitions (PTs). Here, we show that rigidity percolation provides a simple and robust theoretical framework to predict material/structural PTs of embryonic tissues from local cell connectivity. By using percolation theory, combined with directly monitoring dynamic changes in tissue rheology and cell contact mechanics, we demonstrate that the zebrafish blastoderm undergoes a genuine rigidity PT, brought about by a small reduction in adhesion-dependent cell connectivity below a critical value. We quantitatively predict and experimentally verify hallmarks of PTs, including power-law exponents and associated discontinuities of macroscopic observables at criticality. Finally, we show that this uniform PT depends on blastoderm cells undergoing meta-synchronous divisions causing random and, consequently, uniform changes in cell connectivity. Collectively, our theoretical and experimental findings reveal the structural basis of material PTs in an organismal context.