Median Raphe
median raphe
Organization of Midbrain Serotonin System
The serotonin system is the most frequently targeted neural system pharmacologically for treating psychiatric disorders, including depression and anxiety. Serotonin neurons of the dorsal and median raphe nuclei (DR, MR) collectively innervate the entire forebrain and midbrain, modulating diverse physiology and behaviour. By using viral-genetic methods, we found that DR serotonin system contains parallel sub-systems that differ in input and output connectivity, physiological response properties, and behavioural functions. To gain a fundamental understanding of the molecular heterogeneity of DR and MR, we used single-cell RNA - sequencing (scRNA-seq) to generate a comprehensive dataset comprising eleven transcriptomically distinct serotonin neuron clusters. We generated novel intersectional viral-genetic tools to access specific subpopulations. Whole-brain axonal projection mapping revealed that the molecular features of these distinct serotonin groups reflect their anatomical organization and provide tools for future exploration of the full projection map of molecularly defined serotonin groups. The molecular architecture of serotonin system lays the foundation for integrating anatomical, neurochemical, physiological, and behavioural functions.
Dorsal and median raphe neuronal firing dynamics characterized by non-linear measures
FENS Forum 2024
Exploring the cortical control of the median raphe during threat avoidance
FENS Forum 2024
How the vGluT3-positive median raphe cells modulate the hippocampal response to salient stimuli
FENS Forum 2024