Memory Decay
memory decay
Exploring Lifespan Memory Development and Intervention Strategies for Memory Decline through a Unified Model-Based Assessment
Understanding and potentially reversing memory decline necessitates a comprehensive examination of memory's evolution throughout life. Traditional memory assessments, however, suffer from a lack of comparability across different age groups due to the diverse nature of the tests employed. Addressing this gap, our study introduces a novel, ACT-R model-based memory assessment designed to provide a consistent metric for evaluating memory function across a lifespan, from 5 to 85-year-olds. This approach allows for direct comparison across various tasks and materials tailored to specific age groups. Our findings reveal a pronounced U-shaped trajectory of long-term memory function, with performance at age 5 mirroring those observed in elderly individuals with impairments, highlighting critical periods of memory development and decline. Leveraging this unified assessment method, we further investigate the therapeutic potential of rs-fMRI-guided TBS targeting area 8AV in individuals with early-onset Alzheimer’s Disease—a region implicated in memory deterioration and mood disturbances in this population. This research not only advances our understanding of memory's lifespan dynamics but also opens new avenues for targeted interventions in Alzheimer’s Disease, marking a significant step forward in the quest to mitigate memory decay.
Time perception: how our judgment of time is influenced by the regularity and change in stimulus distribution?
To organize various experiences in a coherent mental representation, we need to properly estimate the duration and temporal order of different events. Yet, our perception of time is noisy and vulnerable to various illusions. Studying these illusions can elucidate the mechanism by which the brain perceives time. In this talk, I will review a few studies on how the brain perceives duration of events and the temporal order between self-generated motion and sensory feedback. Combined with computational models at different levels, these experiments illustrated that the brain incorporates the prior knowledge of the statistical distribution of the duration of stimuli and the decay of memory when estimating duration of an individual event, and adjusts its perception of temporal order to changes in the statistics of the environment.