← Back

Memory Formation

Topic spotlight
TopicWorld Wide

memory formation

Discover seminars, jobs, and research tagged with memory formation across World Wide.
30 curated items19 Seminars10 ePosters1 Position
Updated 2 days ago
30 items · memory formation
30 results
PositionNeuroscience

Marsa

Laboratory of Dr. Panayiota Poirazi at IMBB-FORTH
IMBB-FORTH
Dec 5, 2025

The successful applicant will work on a multidisciplinary collaborative project aiming to determine the importance of cortical engram cells in memory formation and storage and probe the role of cortical memory engrams in the generation and retrieval of a sensory-based memory. The project as a whole combines computational modeling, electrophysiology, calcium imaging techniques, and molecular and behavioral experiments. First, the biophysical properties of engrams will be identified in a cortical area of interest, and their functional role will be unraveled in vivo. Then, computational modeling will be used to determine the role of engram cells during memory recall. This project is a collaboration between the Florey Institute of Neuroscience and Mental Health in Melbourne, Australia (Prof. L. Palmer), and the University of Dublin, Ireland (Prof. T. Ryan).

SeminarNeuroscience

Single-neuron correlates of perception and memory in the human medial temporal lobe

Prof. Dr. Dr. Florian Mormann
University of Bonn, Germany
May 13, 2025

The human medial temporal lobe contains neurons that respond selectively to the semantic contents of a presented stimulus. These "concept cells" may respond to very different pictures of a given person and even to their written or spoken name. Their response latency is far longer than necessary for object recognition, they follow subjective, conscious perception, and they are found in brain regions that are crucial for declarative memory formation. It has thus been hypothesized that they may represent the semantic "building blocks" of episodic memories. In this talk I will present data from single unit recordings in the hippocampus, entorhinal cortex, parahippocampal cortex, and amygdala during paradigms involving object recognition and conscious perception as well as encoding of episodic memories in order to characterize the role of concept cells in these cognitive functions.

SeminarNeuroscience

Memory formation in hippocampal microcircuit

Andreakos Nikolaos
Visiting Scientist, School of Computer Science, University of Lincoln, Scientific Associate, National and Kapodistrian University of Athens
Feb 6, 2025

The centre of memory is the medial temporal lobe (MTL) and especially the hippocampus. In our research, a more flexible brain-inspired computational microcircuit of the CA1 region of the mammalian hippocampus was upgraded and used to examine how information retrieval could be affected under different conditions. Six models (1-6) were created by modulating different excitatory and inhibitory pathways. The results showed that the increase in the strength of the feedforward excitation was the most effective way to recall memories. In other words, that allows the system to access stored memories more accurately.

SeminarNeuroscience

Hippocampal Ripple Diversity and Neural Plasticity: Insights into Semantic Memory Formation

Lisa Genzel
Radboud University, Nijmegen
Dec 11, 2024
SeminarNeuroscience

Sleep deprivation and the human brain: from brain physiology to cognition”

Ali Salehinejad
Leibniz Research Centre for Working Environment & Human Factors, Dortmund, Germany
Aug 28, 2023

Sleep strongly affects synaptic strength, making it critical for cognition, especially learning and memory formation. Whether and how sleep deprivation modulates human brain physiology and cognition is poorly understood. Here we examined how overnight sleep deprivation vs overnight sufficient sleep affects (a) cortical excitability, measured by transcranial magnetic stimulation, (b) inducibility of long-term potentiation (LTP)- and long-term depression (LTD)-like plasticity via transcranial direct current stimulation (tDCS), and (c) learning, memory, and attention. We found that sleep deprivation increases cortical excitability due to enhanced glutamate-related cortical facilitation and decreases and/or reverses GABAergic cortical inhibition. Furthermore, tDCS-induced LTP-like plasticity (anodal) abolishes while the inhibitory LTD-like plasticity (cathodal) converts to excitatory LTP-like plasticity under sleep deprivation. This is associated with increased EEG theta oscillations due to sleep pressure. Motor learning, behavioral counterparts of plasticity, and working memory and attention, which rely on cortical excitability, are also impaired during sleep deprivation. Our study indicates that upscaled brain excitability and altered plasticity, due to sleep deprivation, are associated with impaired cognitive performance. Besides showing how brain physiology and cognition undergo changes (from neurophysiology to higher-order cognition) under sleep pressure, the findings have implications for variability and optimal application of noninvasive brain stimulation.

SeminarNeuroscience

Establishment and aging of the neuronal DNA methylation landscape in the hippocampus

Sara Zocher, PhD
German Center for Neurodegenerative Diseases (DZNE), Dresden
Apr 11, 2023

The hippocampus is a brain region with key roles in memory formation, cognitive flexibility and emotional control. Yet hippocampal function is impaired severely during aging and in neurodegenerative diseases, and impairments in hippocampal function underlie age-related cognitive decline. Accumulating evidence suggests that the deterioration of the neuron-specific epigenetic landscape during aging contributes to their progressive, age-related dysfunction. For instance, we have recently shown that aging is associated with pronounced alterations of neuronal DNA methylation patterns in the hippocampus. Because neurons are generated mostly during development with limited replacement in the adult brain, they are particularly long-lived cells and have to maintain their cell-type specific gene expression programs life-long in order to preserve brain function. Understanding the epigenetic mechanisms that underlie the establishment and long-term maintenance of neuron-specific gene expression programs, will help us to comprehend the sources and consequences of their age-related deterioration. In this talk, I will present our recent work that investigated the role of DNA methylation in the establishment of neuronal gene expression programs and neuronal function, using adult neurogenesis in the hippocampus as a model. I will then describe the effects of aging on the DNA methylation landscape in the hippocampus and discuss the malleability of the aging neuronal methylome to lifestyle and environmental stimulation.

SeminarNeuroscienceRecording

Are place cells just memory cells? Probably yes

Stefano Fusi
Columbia University, New York
Mar 21, 2023

Neurons in the rodent hippocampus appear to encode the position of the animal in physical space during movement. Individual ``place cells'' fire in restricted sub-regions of an environment, a feature often taken as evidence that the hippocampus encodes a map of space that subserves navigation. But these same neurons exhibit complex responses to many other variables that defy explanation by position alone, and the hippocampus is known to be more broadly critical for memory formation. Here we elaborate and test a theory of hippocampal coding which produces place cells as a general consequence of efficient memory coding. We constructed neural networks that actively exploit the correlations between memories in order to learn compressed representations of experience. Place cells readily emerged in the trained model, due to the correlations in sensory input between experiences at nearby locations. Notably, these properties were highly sensitive to the compressibility of the sensory environment, with place field size and population coding level in dynamic opposition to optimally encode the correlations between experiences. The effects of learning were also strongly biphasic: nearby locations are represented more similarly following training, while locations with intermediate similarity become increasingly decorrelated, both distance-dependent effects that scaled with the compressibility of the input features. Using virtual reality and 2-photon functional calcium imaging in head-fixed mice, we recorded the simultaneous activity of thousands of hippocampal neurons during virtual exploration to test these predictions. Varying the compressibility of sensory information in the environment produced systematic changes in place cell properties that reflected the changing input statistics, consistent with the theory. We similarly identified representational plasticity during learning, which produced a distance-dependent exchange between compression and pattern separation. These results motivate a more domain-general interpretation of hippocampal computation, one that is naturally compatible with earlier theories on the circuit's importance for episodic memory formation. Work done in collaboration with James Priestley, Lorenzo Posani, Marcus Benna, Attila Losonczy.

SeminarNeuroscienceRecording

Targeted Activation of Hippocampal Place Cells Drives Memory-Guided Spatial Behaviour

Nick Robinson
Häusser lab, UCL
Nov 30, 2021

The hippocampus is crucial for spatial navigation and episodic memory formation. Hippocampal place cells exhibit spatially selective activity within an environment and have been proposed to form the neural basis of a cognitive map of space that supports these mnemonic functions. However, the direct influence of place cell activity on spatial navigation behaviour has not yet been demonstrated. Using an ‘all-optical’ combination of simultaneous two-photon calcium imaging and two-photon holographically targeted optogenetics, we identified and selectively activated place cells that encoded behaviourally relevant locations in a virtual reality environment. Targeted stimulation of a small number of place cells was sufficient to bias the behaviour of animals during a spatial memory task, providing causal evidence that hippocampal place cells actively support spatial navigation and memory. Time permitting, I will also describe new experiments aimed at understanding the fundamental encoding mechanism that supports episodic memory, focussing on the role of hippocampal sequences across multiple timescales and behaviours.

SeminarNeuroscience

Neural stem cells as biomarkers of cognitive aging and dementia

Sandrine Thuret
King's College London, Institute of Psychiatry, Psychology & Neuroscience, Basic & Clinical, Neuroscience Department
Jun 24, 2021

Adult hippocampal neurogenesis is implicated in memory formation and mood regulation. The Thuret lab investigates environmental and molecular mechanisms controlling the production of these adult-born neurons and how they impact mental health. We study neurogenesis in healthy ageing as well as in the context of diseases such as Alzheimer’s and depression. By approaching neurogenesis in health and disease, the strategy is two folds: (i) Validating the neurogenic process as a target for prevention and pharmacological interventions. (ii) Developing neurogenesis as a biomarker of disease prediction and progression. In this talk, I will focus on presenting some recent human studies demonstrating how hippocampal neural stem cells fate can be used as biomarkers of cognitive aging and dementia.

SeminarNeuroscience

Imaging memory consolidation in wakefulness and sleep

Monika Schönauer
Albert-Ludwigs-Univery of Freiburg
Jun 16, 2021

New memories are initially labile and have to be consolidated into stable long-term representations. Current theories assume that this is supported by a shift in the neural substrate that supports the memory, away from rapidly plastic hippocampal networks towards more stable representations in the neocortex. Rehearsal, i.e. repeated activation of the neural circuits that store a memory, is thought to crucially contribute to the formation of neocortical long-term memory representations. This may either be achieved by repeated study during wakefulness or by a covert reactivation of memory traces during offline periods, such as quiet rest or sleep. My research investigates memory consolidation in the human brain with multivariate decoding of neural processing and non-invasive in-vivo imaging of microstructural plasticity. Using pattern classification on recordings of electrical brain activity, I show that we spontaneously reprocess memories during offline periods in both sleep and wakefulness, and that this reactivation benefits memory retention. In related work, we demonstrate that active rehearsal of learning material during wakefulness can facilitate rapid systems consolidation, leading to an immediate formation of lasting memory engrams in the neocortex. These representations satisfy general mnemonic criteria and cannot only be imaged with fMRI while memories are actively processed but can also be observed with diffusion-weighted imaging when the traces lie dormant. Importantly, sleep seems to hold a crucial role in stabilizing the changes in the contribution of memory systems initiated by rehearsal during wakefulness, indicating that online and offline reactivation might jointly contribute to forming long-term memories. Characterizing the covert processes that decide whether, and in which ways, our brains store new information is crucial to our understanding of memory formation. Directly imaging consolidation thus opens great opportunities for memory research.

SeminarNeuroscienceRecording

Astrocytes contribute to remote memory formation by modulating hippocampal-cortical communication during learning

Adi Kol
Goshen lab, Edmond and Lily Safra Center for Brain Sciences
Apr 6, 2021

How is it that some memories fade in a day while others last forever? The formation of long-lasting (remote) memories depends on the coordinated activity between the hippocampus and frontal cortices, but the timeline of these interactions is debated. Astrocytes, star-shaped glial cells, sense and modify neuronal activity, but their role in remote memory is scarcely explored. We manipulated the activity of hippocampal astrocytes during memory acquisition and discovered it impaired remote, but not recent, memory retrieval. We also revealed a massive recruitment of cortical-projecting hippocampal neurons during memory acquisition, a process that is specifically inhibited by astrocytic manipulation. Finally, we directly inhibited this projection during memory acquisition to prove its necessity for the formation of remote memory. Our findings reveal that the foundation of remote memory can be established during acquisition with projection-specific effect of astrocytes.

SeminarNeuroscience

New Strategies and Approaches to Tackle and Understand Neurological Disorder

Mauro Costa-Mattioli
The Memory & Brain Research Center (MBRC), Baylor College of Medicine, Houston, Texas, USA
Mar 17, 2021

Broadly, the Mauro Costa-Mattioli laboratory (The MCM Lab) encompasses two complementary lines of research. The first one, more traditional but very important, aims at unraveling the molecular mechanisms underlying memory formation (e.g., using state-of-the-art molecular and cell-specific genetic approaches). Learning and memory disorders can strike the brain during development (e.g., Autism Spectrum Disorders and Down Syndrome), as well as during adulthood (e.g., Alzheimer’s disease). We are interested in understanding the specific circuits and molecular pathways that are primarily targeted in these disorders and how they can be restored. To tackle these questions, we use a multidisciplinary, convergent and cross-species approach that combines mouse and fly genetics, molecular biology, electrophysiology, stem cell biology, optogenetics and behavioral techniques. The second line of research, more recent and relatively unexplored, is focused on understanding how gut microbes control CNS driven-behavior and brain function. Our recent discoveries, that microbes in the gut could modulate brain function and behavior in a very powerful way, have added a whole new dimension to the classic view of how complex behaviors are controlled. The unexpected findings have opened new avenues of study for us and are currently driving my lab to answer a host of new and very interesting questions: - What are the gut microbes (and metabolites) that regulate CNS-driven behaviors? Would it be possible to develop an unbiased screening method to identify specific microbes that regulate different behaviors? - If this is the case, can we identify how members of the gut microbiome (and their metabolites) mechanistically influence brain function? - What is the communication channel between the gut microbiota and the brain? Do different gut microbes use different ways to interact with the brain? - Could disruption of the gut microbial ecology cause neurodevelopmental dysfunction? If so, what is the impact of disruption in young and adult animals? - More importantly, could specific restoration of selected bacterial strains (new generation probiotics) represent a novel therapeutic approach for the targeted treatment of neurodevelopmental disorders? - Finally, can we develop microbiota-directed therapeutic foods to repair brain dysfunction in a variety of neurological disorders?

SeminarNeuroscienceRecording

The When, Where and What of visual memory formation

Brad Wyble
Pennsylvania State University
Feb 11, 2021

The eyes send a continuous stream of about two million nerve fibers to the brain, but only a fraction of this information is stored as visual memories. This talk will detail three neurocomputational models that attempt an understanding how the visual system makes on-the-fly decisions about how to encode that information. First, the STST family of models (Bowman & Wyble 2007; Wyble, Potter, Bowman & Nieuwenstein 2011) proposes mechanisms for temporal segmentation of continuous input. The conclusion of this work is that the visual system has mechanisms for rapidly creating brief episodes of attention that highlight important moments in time, and also separates each episode from temporally adjacent neighbors to benefit learning. Next, the RAGNAROC model (Wyble et al. 2019) describes a decision process for determining the spatial focus (or foci) of attention in a spatiotopic field and the neural mechanisms that provide enhancement of targets and suppression of highly distracting information. This work highlights the importance of integrating behavioral and electrophysiological data to provide empirical constraints on a neurally plausible model of spatial attention. The model also highlights how a neural circuit can make decisions in a continuous space, rather than among discrete alternatives. Finally, the binding pool (Swan & Wyble 2014; Hedayati, O’Donnell, Wyble in Prep) provides a mechanism for selectively encoding specific attributes (i.e. color, shape, category) of a visual object to be stored in a consolidated memory representation. The binding pool is akin to a holographic memory system that layers representations of select latent representations corresponding to different attributes of a given object. Moreover, it can bind features into distinct objects by linking them to token placeholders. Future work looks toward combining these models into a coherent framework for understanding the full measure of on-the-fly attentional mechanisms and how they improve learning.

SeminarNeuroscience

Cellular mechanisms of conscious perception

Matthew Larkum
Humboldt University, Berlin, Germany
Jan 12, 2021

Arguably one of the biggest mysteries in neuroscience is how the brain stores long-term memories. The major challenge for investigating the neural circuit underlying memory formation in the neocortex is the distributed nature of the resulting memory trace throughout the cortex. Here, we used a new behavioral paradigm that enabled us to generate memory traces in a specific cortical location and to specifically examine the mechanisms of memory formation in that region. We found that medial-temporal inputs arrive in neocortical layer 1 where the apical dendrites of cortical pyramidal neurons predominate. These dendrites have active properties that make them sensitive to contextual inputs from other areas that also send axons to layer 1 around the cortex. Blocking the influence of these medial-temporal inputs prevented learning and suppressed resulting dendritic activity. We conclude that layer 1 is the locus for hippocampal-dependent memory formation in the neocortex and propose that this process enhances the sensitivity of the tuft dendrites to contextual inputs.

SeminarNeuroscienceRecording

Hippocampal replays appear after a single experience and slow down with subsequent experience as greater detail is incorporated

Alice Berners-Lee
Johns Hopkins / UC Berkeley (David Foster's lab)
Jul 30, 2020

The hippocampus is implicated in memory formation, and neurons in the hippocampus take part in replay sequences, time-compressed reactivations of trajectories through space the animal has previously explored. These replay sequences have been proposed to be a form of memory for previously experienced places. I will present work exploring how these replays appear and change with experience. By recording from large ensembles of hippocampal neurons as rats explored novel and familiar linear tracks in various experiments, we found that hippocampal replays appear after a single experience and slow down with subsequent experience as greater detail is incorporated. We also investigated hover-and-jump dynamics within replays that are associated with the slow gamma (25-50Hz) oscillation in the LFP and found that replays slow down by adding more hover locations, corresponding to depiction of the behavioral trajectory with increased resolution. Thus, replays can reflect single experiences, and be rapidly modified by subsequent experience to incorporate more detail, consistent with their proposed role as a basic mechanism of hippocampally dependent memory.

ePoster

Neural Dynamics of Memory Formation in the Primate Hippocampus

Elizabeth Buffalo

Bernstein Conference 2024

ePoster

Astrocytes provide the temporal dynamic required for theta-driven memory formation in the hippocampus

Silas Larsen, Nikolaj Winther Hansen, Navneet A Vasistha, Konstantin Khodosevich, Jean-Francois Perrier

FENS Forum 2024

ePoster

A brainstem-hippocampus system-level interaction supports memory formation

Juan F. Ramirez-Villegas, Damaris K. Rangel-Guerrero, Peter Baracskay, Jozsef Csicsvari

FENS Forum 2024

ePoster

Cell-type specific actions of Nogo-A in controlling spatial memory formation by modulating neuronal excitability

Jan Flechtner, Steffen Fricke, Marta Zagrebelsky, Martin Korte

FENS Forum 2024

ePoster

Distinct structural dynamics of CA1 inhibitory synapses in neuronal compartments during memory formation

Hannah Klimmt, Alessandro Ulivi, David Kappel, Bhargavi Keerthana Boovaraga Murthy, Alessio Attardo

FENS Forum 2024

ePoster

Engram-specific synaptic potentiation is important for fear memory formation and expression in vivo

Matteo Saderi, Ankit Awasthi, Sheena Josselyn, Paul Frankland

FENS Forum 2024

ePoster

GPR50 regulates social memory formation

Yan-Yun Sun, Yuan-Yuan Wang, Quan-Hong Ma

FENS Forum 2024

ePoster

Memories by a thousand rules: Meta-learning plasticity rules for memory formation and recall in large spiking networks

Basile Confavreux, Poornima Ramesh, Pedro J. Gonçalves, Jakob H. Macke, Tim P. Vogels

FENS Forum 2024

ePoster

Probing memory formation and retrieval in hippocampal networks

Ivan Montiel, Cantin Ortiz, Desdemona Fricker, Christoph Schmidt-Hieber

FENS Forum 2024

ePoster

Synapse-specific investigation of the single-cell gene regulatory dynamics to reveal the molecular basis of plasticity in aversive memory formation

Valentina Khalil, Kaho Ito, Islam Faress, Sadegh Nabavi, Taro Kitazawa

FENS Forum 2024