Mental Health
mental health
Decoding stress vulnerability
Although stress can be considered as an ongoing process that helps an organism to cope with present and future challenges, when it is too intense or uncontrollable, it can lead to adverse consequences for physical and mental health. Social stress specifically, is a highly prevalent traumatic experience, present in multiple contexts, such as war, bullying and interpersonal violence, and it has been linked with increased risk for major depression and anxiety disorders. Nevertheless, not all individuals exposed to strong stressful events develop psychopathology, with the mechanisms of resilience and vulnerability being still under investigation. During this talk, I will identify key gaps in our knowledge about stress vulnerability and I will present our recent data from our contextual fear learning protocol based on social defeat stress in mice.
MedUni PhD Recruitment
Medical University of Vienna invites applications for all currently open Ph.D. positions within their 18 Ph.D. programs. We encourage ambitious and creative young scientists to develop their original research project in the field of Behavioural Biology, Biochemistry, Biophysics, Bioinformatics & Machine Learning, Cancer, Cardiovascular Systems, Drug Targets & Drug Development, Endocrinology & Metabolism, Biomedical Engineering, Mathematics & Statistics, Immunology, Medical Physics, Mental Health, Molecular and Cellular Biology, Neuroscience and Public Health with the assistance of our renowned and international scientists . Benefit from a well-established and connected network within the science community and built important relations with your peers at our university. On top of it, become an expert in your field! All project information can be found online under https://www.meduniwien.ac.at/web/en/studies-further-education/phd-doctoral-programmes/phd-programme-un094/phd-opportunities/ Apply online till 20.11.2022
Dr Flavia Mancini
This is an opportunity for a highly creative and skilled pre-doctoral Research Assistant to join the dynamic and multidisciplinary research environment of the Computational and Biological Learning research group (https://www.cbl-cambridge.org/), Department of Engineering, University of Cambridge. We are looking for a Research Assistant to work on projects related to statistical learning and contextual inference in the human brain. We have a particular focus of learning of aversive states, as this has a strong clinical significance for chronic pain and mental health disorders. The RA will be supervised by Dr Flavia Mancini (MRC Career Development fellow, and Head of the Nox Lab www.noxlab.org), and is expected to collaborate with theoretical and experimental colleagues in Cambridge, Oxford and abroad. The post holder will be located in central Cambridge, Cambridgeshire, UK. As a general approach, we combine statistical learning tasks in humans, computational modelling (using Bayesian inference, reinforcement learning, deep learning and neural networks) with neuroimaging methods (including 7T fMRI). The successful candidate will strengthen this approach and be responsible for designing experiments, collecting and analysis behavioural and brain fMRI data using computational modelling techniques. The key responsibilities and duties are: Ideating and conducting research studies on statistical/aversive learning, combining behavioural tasks, computational modelling (using Bayesian inference, reinforcement learning, deep learning and/or neural networks) with fMRI in healthy volunteers and chronic pain patients. Disseminating research findings Maintaining and developing technical skills to expand their scientific potential ******* More info and to apply: https://www.jobs.cam.ac.uk/job/35905/
Dr. Tobias U. Hauser
We have a postdoc position at the Max Planck UCL Centre for Computational Psychiatry and Ageing Research and the Wellcome Centre for Human Neuroimaging to fill this summer. The eligible candidate should have a strong background in fMRI and decision making. They will join the developmental computational psychiatry group, working on innovative topics, such as structure learning, complex decision making and mental health. The focus will be on conducting fMRI research with the possibility to do computational modelling.
Dr Tobias U. Hauser
The eligible candidate should have a strong background in fMRI and decision making. He will join the developmental computational psychiatry group, working on innovative topics, such as structure learning, complex decision making and mental health. The focus will be on conducting fMRI research with the possibility to do computational modelling.
N/A
The Department of Psychology at the University of Miami invites applications for two full-time, tenure-eligible, or tenure-track faculty members to join our department in August 2024. One position is in the department’s Adult Division, and the other is the Cognitive & Behavioral Neuroscience division. The specific area for both positions is open. For the Adult Division, areas of focus could include basic research on affect, cognitive science, and/or mechanistic studies related to mental health or the impact of disparities. Scholars with expertise in lab-based experimental, neurophysiological, computational, and/or mobile health/digital phenotyping methods are welcome. Individuals with interests in data science, including advanced quantitative techniques, big data, and machine learning are also encouraged to apply. For the Cognitive & Behavioral Neuroscience Division, we are particularly interested in individuals who incorporate innovative and sophisticated cognitive, affective, or social neuroscience methods into their research program.
Silvia Lopez-Guzman
The Unit on Computational Decision Neuroscience (CDN) at the National Institute of Mental Health is seeking a full-time Data Scientist/Data Analyst. The lab is focused on understanding the neural and computational bases of adaptive and maladaptive decision-making and their relationship to mental health. Current studies investigate how internal states lead to biases in decision-making and how this is exacerbated in mental health disorders. Our approach involves a combination of computational model-based tasks, questionnaires, biosensor data, fMRI, and intracranial recordings. The main models of interest come from neuroeconomics, reinforcement learning, Bayesian inference, signal detection, and information theory. The main tasks for this position include computational modeling of behavioral data from decision-making and other cognitive tasks, statistical analysis of task-based, clinical, physiological and neuroimaging data, as well as data visualization for scientific presentations, public communication, and academic manuscripts. The candidate is expected to demonstrate experience with best practices for the development of well-documented, reproducible programming pipelines for data analysis, that facilitate sharing and collaboration, and live up to our open-science philosophy, as well as to our data management and sharing commitments at NIH.
Jochen Triesch
We solicit applications for a PhD position to develop machine learning techniques for personalized prediction of psychopathology. The position will be part of a large new center aiming to develop a novel dynamic network approach of mental health. This center, the 'LOEWE center DYNAMIC', brings together scientists from a range of disciplines, including psychology, psychiatry, computer science and machine learning, with a shared goal of advancing our understanding of mental disorders and developing new treatment options. The center’s research focuses on the application of dynamic network models at various levels (neurobiological, psychological and psychopathological) to mental disorder research. It brings together researchers from the Universities of Marburg, Giessen, Frankfurt and Darmstadt, as well as the Leibniz Institute for Research and Information in Education DIPF and the Ernst Strüngmann Institute for Neurosciences ESI. The respective university hospitals and the psychotherapy outpatient clinics of the psychological university institutes are also involved, facilitating the rapid transfer of research results into practice. The present opening will be associated with the Department of Computer Science at the University of Frankfurt. The objective of the project is to develop a personalized prediction model for changes in psychopathology (new depressive episodes), behavioral patterns and biological parameters. Many mental illnesses are characterized by changes in the network structure of the brain that affect observable patterns of activity or behavior in the future. Early detection and especially prediction of changes in behavioral parameters, psychopathology and biomarkers could enable targeted, personalized interventions to offer special (additional, more specific) therapies to patients with poor prognosis. The objective of this project is to develop methods for the early and reliable detection and prediction of changes in multimodal data.
Michael J Frank, PhD
The Department of Cognitive and Psychological Sciences (CoPsy) at Brown University invites applications for a tenure-track Assistant or tenured Associate Professor beginning July 1, 2025. We anticipate hiring up to two candidates with the area open. However, candidates' research must focus on one of the following research themes: (1) the interface between artificial intelligence and cognition, (2) collective cognition and behavior, and/or (3) mechanisms of mental and brain health. In addition to building an externally funded nationally recognized research program, a successful candidate will provide effective instruction and advising to a diverse group of graduate and undergraduate students, and be willing to interact with colleagues from a wide range of disciplines and academic backgrounds. The CoPsy department is committed to creating a welcoming and supportive environment that values diversity. The department strongly encourages qualified candidates who can contribute to equity, diversity, and inclusion through their teaching, mentoring, service and research. Successful candidates are expected to have (1) a track record of excellence in research, (2) a well-specified research plan that is likely to lead to research funding, and (3) a readiness to contribute to teaching and mentoring at both the undergraduate and graduate level. The CoPsy department has a highly interdisciplinary research environment in the study of mind, brain, and behavior, offering curricular programs in Psychology, Cognitive Science, Cognitive Neuroscience, and Behavioral Decision Sciences. The Department is located in the heart of campus, and is associated with many Centers and Initiatives at the University, including the Carney Institute for Brain Science, Watson Institute for International and Public Affairs, Data Science Initiative, Center for the Study of Race and Ethnicity in America.
Ryan Thomas Philips
Azim Premji University has launched an exciting new interdisciplinary major in psychology and cognition, focusing on themes like human cognitive development in the life cycle, mental health and well-being, and machine intelligence and learning. The programme aims to provide holistic insights into the interplay of the mind and behaviour by drawing from various disciplines such as philosophy, neuroscience, psychology, computer science, and socio-cultural contexts. We are specifically looking for faculty who specialise in Developmental Psychology and Cognitive Sciences. Exceptional candidates with expertise in any other related field are also encouraged to apply. We look for applicants who resonate with the purpose of the University and are keen to contribute to the design, development, and delivery of the courses in psychology and cognitive science in our undergraduate programme. The programme is residential for students, and faculty are expected to contribute to research, teaching, and mentoring students, and help build a vibrant community of learning.
Neural circuits underlying sleep structure and functions
Sleep is an active state critical for processing emotional memories encoded during waking in both humans and animals. There is a remarkable overlap between the brain structures and circuits active during sleep, particularly rapid eye-movement (REM) sleep, and the those encoding emotions. Accordingly, disruptions in sleep quality or quantity, including REM sleep, are often associated with, and precede the onset of, nearly all affective psychiatric and mood disorders. In this context, a major biomedical challenge is to better understand the underlying mechanisms of the relationship between (REM) sleep and emotion encoding to improve treatments for mental health. This lecture will summarize our investigation of the cellular and circuit mechanisms underlying sleep architecture, sleep oscillations, and local brain dynamics across sleep-wake states using electrophysiological recordings combined with single-cell calcium imaging or optogenetics. The presentation will detail the discovery of a 'somato-dendritic decoupling'in prefrontal cortex pyramidal neurons underlying REM sleep-dependent stabilization of optimal emotional memory traces. This decoupling reflects a tonic inhibition at the somas of pyramidal cells, occurring simultaneously with a selective disinhibition of their dendritic arbors selectively during REM sleep. Recent findings on REM sleep-dependent subcortical inputs and neuromodulation of this decoupling will be discussed in the context of synaptic plasticity and the optimization of emotional responses in the maintenance of mental health.
Developmental and evolutionary perspectives on thalamic function
Brain organization and function is a complex topic. We are good at establishing correlates of perception and behavior across forebrain circuits, as well as manipulating activity in these circuits to affect behavior. However, we still lack good models for the large-scale organization and function of the forebrain. What are the contributions of the cortex, basal ganglia, and thalamus to behavior? In addressing these questions, we often ascribe function to each area as if it were an independent processing unit. However, we know from the anatomy that the cortex, basal ganglia, and thalamus, are massively interconnected in a large network. One way to generate insight into these questions is to consider the evolution and development of forebrain systems. In this talk, I will discuss the developmental and evolutionary (comparative anatomy) data on the thalamus, and how it fits within forebrain networks. I will address questions including, when did the thalamus appear in evolution, how is the thalamus organized across the vertebrate lineage, and how can the change in the organization of forebrain networks affect behavioral repertoires.
Dopaminergic Network Dynamics
Digital Minds: Brain Development in the Age of Technology
Digital Minds: Brain Development in the Age of Technology examines how our increasingly connected world shapes mental and cognitive health. From screen time and social media to virtual interactions, this seminar delves into the latest research on how technology influences brain development, relationships, and emotional well-being. Join us to explore strategies for harnessing technology's benefits while mitigating its potential challenges, empowering you to thrive in a digital age.
Screen Savers : Protecting adolescent mental health in a digital world
In our rapidly evolving digital world, there is increasing concern about the impact of digital technologies and social media on the mental health of young people. Policymakers and the public are nervous. Psychologists are facing mounting pressures to deliver evidence that can inform policies and practices to safeguard both young people and society at large. However, research progress is slow while technological change is accelerating.My talk will reflect on this, both as a question of psychological science and metascience. Digital companies have designed highly popular environments that differ in important ways from traditional offline spaces. By revisiting the foundations of psychology (e.g. development and cognition) and considering digital changes' impact on theories and findings, we gain deeper insights into questions such as the following. (1) How do digital environments exacerbate developmental vulnerabilities that predispose young people to mental health conditions? (2) How do digital designs interact with cognitive and learning processes, formalised through computational approaches such as reinforcement learning or Bayesian modelling?However, we also need to face deeper questions about what it means to do science about new technologies and the challenge of keeping pace with technological advancements. Therefore, I discuss the concept of ‘fast science’, where, during crises, scientists might lower their standards of evidence to come to conclusions quicker. Might psychologists want to take this approach in the face of technological change and looming concerns? The talk concludes with a discussion of such strategies for 21st-century psychology research in the era of digitalization.
Neural mechanisms governing the learning and execution of avoidance behavior
The nervous system orchestrates adaptive behaviors by intricately coordinating responses to internal cues and environmental stimuli. This involves integrating sensory input, managing competing motivational states, and drawing on past experiences to anticipate future outcomes. While traditional models attribute this complexity to interactions between the mesocorticolimbic system and hypothalamic centers, the specific nodes of integration have remained elusive. Recent research, including our own, sheds light on the midline thalamus's overlooked role in this process. We propose that the midline thalamus integrates internal states with memory and emotional signals to guide adaptive behaviors. Our investigations into midline thalamic neuronal circuits have provided crucial insights into the neural mechanisms behind flexibility and adaptability. Understanding these processes is essential for deciphering human behavior and conditions marked by impaired motivation and emotional processing. Our research aims to contribute to this understanding, paving the way for targeted interventions and therapies to address such impairments.
Applied cognitive neuroscience to improve learning and therapeutics
Advancements in cognitive neuroscience have provided profound insights into the workings of the human brain and the methods used offer opportunities to enhance performance, cognition, and mental health. Drawing upon interdisciplinary collaborations in the University of California San Diego, Human Performance Optimization Lab, this talk explores the application of cognitive neuroscience principles in three domains to improve human performance and alleviate mental health challenges. The first section will discuss studies addressing the role of vision and oculomotor function in athletic performance and the potential to train these foundational abilities to improve performance and sports outcomes. The second domain considers the use of electrophysiological measurements of the brain and heart to detect, and possibly predict, errors in manual performance, as shown in a series of studies with surgeons as they perform robot-assisted surgery. Lastly, findings from clinical trials testing personalized interventional treatments for mood disorders will be discussed in which the temporal and spatial parameters of transcranial magnetic stimulation (TMS) are individualized to test if personalization improves treatment response and can be used as predictive biomarkers to guide treatment selection. Together, these translational studies use the measurement tools and constructs of cognitive neuroscience to improve human performance and well-being.
Currents of Hope: how noninvasive brain stimulation is reshaping modern psychiatric care; Adapting to diversity: Integrating variability in brain structure and function into personalized / closed-loop non-invasive brain stimulation for substance use disorders
In March we will focus on TMS and host Ghazaleh Soleimani and Colleen Hanlon. The talks will talk place on Thursday, March 28th at noon ET – please be aware that this means 5PM CET since Boston already switched to summer time! Ghazaleh Soleimani, PhD, is a postdoctoral fellow in Dr Hamed Ekhtiari’s lab at the University of Minnesota. She is also the executive director of the International Network of tES/TMS for Addiction Medicine (INTAM). She will discuss “Adapting to diversity: Integrating variability in brain structure and function into personalized / closed-loop non-invasive brain stimulation for substance use disorders”. Colleen Hanlon, PhD, currently serves as a Vice President of Medical Affairs for BrainsWay, a company specializing in medical devices for mental health, including TMS. Colleen previously worked at the Medical University of South Carolina and Wake Forest School of Medicine. She received the International Brain Stimulation Early Career Award in 2023. She will discuss “Currents of Hope: how noninvasive brain stimulation is reshaping modern psychiatric care”. As always, we will also get a glimpse at the “Person behind the science”. Please register va talks.stimulatingbrains.org to receive the (free) Zoom link, subscribe to our newsletter, or follow us on Twitter/X for further updates!
Use of brain imaging data to improve prescriptions of psychotropic drugs - Examples of ketamine in depression and antipsychotics in schizophrenia
The use of molecular imaging, particularly PET and SPECT, has significantly transformed the treatment of schizophrenia with antipsychotic drugs since the late 1980s. It has offered insights into the links between drug target engagement, clinical effects, and side effects. A therapeutic window for receptor occupancy is established for antipsychotics, yet there is a divergence of opinions regarding the importance of blood levels, with many downplaying their significance. As a result, the role of therapeutic drug monitoring (TDM) as a personalized therapy tool is often underrated. Since molecular imaging of antipsychotics has focused almost entirely on D2-like dopamine receptors and their potential to control positive symptoms, negative symptoms and cognitive deficits are hardly or not at all investigated. Alternative methods have been introduced, i.e. to investigate the correlation between approximated receptor occupancies from blood levels and cognitive measures. Within the domain of antidepressants, and specifically regarding ketamine's efficacy in depression treatment, there is limited comprehension of the association between plasma concentrations and target engagement. The measurement of AMPA receptors in the human brain has added a new level of comprehension regarding ketamine's antidepressant effects. To ensure precise prescription of psychotropic drugs, it is vital to have a nuanced understanding of how molecular and clinical effects interact. Clinician scientists are assigned with the task of integrating these indispensable pharmacological insights into practice, thereby ensuring a rational and effective approach to the treatment of mental health disorders, signaling a new era of personalized drug therapy mechanisms that promote neuronal plasticity not only under pathological conditions, but also in the healthy aging brain.
Brain Connectivity Workshop
Founded in 2002, the Brain Connectivity Workshop (BCW) is an annual international meeting for in-depth discussions of all aspects of brain connectivity research. By bringing together experts in computational neuroscience, neuroscience methodology and experimental neuroscience, it aims to improve the understanding of the relationship between anatomical connectivity, brain dynamics and cognitive function. These workshops have a unique format, featuring only short presentations followed by intense discussion. This year’s workshop is co-organised by Wellcome, putting the spotlight on brain connectivity in mental health disorders. We look forward to having you join us for this exciting, thought-provoking and inclusive event.
The Insights and Outcomes of the Wellcome-funded Waiting Times Project
Waiting is one of healthcare’s core experiences. It is there in the time it takes to access services; through the days, weeks, months or years needed for diagnoses; in the time that treatment takes; and in the elongated time-frames of recovery, relapse, remission and dying.Funded by the Wellcome Trust, our project opens up what it means to wait in and for healthcare by examining lived experiences, representations and histories of delayed and impeded time.In an era in which time is lived at increasingly different and complex tempos, Waiting Times looks to understand both the difficulties and vital significance of waiting for practices of care, offering a fundamental re-conceptualisation of the relation between time and care in contemporary thinking about health, illness, and wellbeing.
Richly structured reward predictions in dopaminergic learning circuits
Theories from reinforcement learning have been highly influential for interpreting neural activity in the biological circuits critical for animal and human learning. Central among these is the identification of phasic activity in dopamine neurons as a reward prediction error signal that drives learning in basal ganglia and prefrontal circuits. However, recent findings suggest that dopaminergic prediction error signals have access to complex, structured reward predictions and are sensitive to more properties of outcomes than learning theories with simple scalar value predictions might suggest. Here, I will present recent work in which we probed the identity-specific structure of reward prediction errors in an odor-guided choice task and found evidence for multiple predictive “threads” that segregate reward predictions, and reward prediction errors, according to the specific sensory features of anticipated outcomes. Our results point to an expanded class of neural reinforcement learning algorithms in which biological agents learn rich associative structure from their environment and leverage it to build reward predictions that include information about the specific, and perhaps idiosyncratic, features of available outcomes, using these to guide behavior in even quite simple reward learning tasks.
The Picower Institute Spring 2023 Symposium "Environmental and Social Determinants of Child Mental Health
Studies show that abuse, neglect or trauma during childhood can lead to lifelong struggles including with mental health. Fortunately research also indicates that solutions and interventions at various stages of life can be developed to help. But even among people who remain resilient or do not experience acute stresses, a lack of opportunity early in life due to poverty or systemic racism can still constrain their ability to realize their full potential. In what ways are health and other outcomes affected by early life difficulty? What can individuals and institutions do to enhance opportunity?" "This daylong event will feature talks by neuroscientists, policy experts, physicians, educators and activists as they discuss how our experiences and biology work together to affect how our minds develop and what can be accomplished in helping people overcome early disadvantages.
Targeting Maladaptive Emotional Memories to Treat Mental Health Disorders: Insights from Rodent Models
Maladaptive emotional memories contribute to the persistence of numerous mental health disorders, including post-traumatic stress disorder (PTSD), drug addiction and obsessive-compulsive disorder (OCD). Using rodent behavioural models of the psychological processes relevant to these disorders, it is possible to identify potential treatment targets for the development of new therapies, including those based upon disrupting the reconsolidation of maladaptive emotional memories. Using examples from rodent models relevant to multiple mental health disorders, this talk will consider some of the opportunities and challenges that this approach provides.
Fragile minds in a scary world: trauma and post traumatic stress in very young children
Post traumatic stress disorder (PTSD) is a prevalent and disabling condition that affects larger numbers of children and adolescents worldwide. Until recently, we have understood little about the nature of PTSD reactions in our youngest children (aged under 8 years old). This talk describes our work over the last 15 years working with this very young age group. It overviews how we need a markedly different PTSD diagnosis for very young children, data on the prevalence of this new diagnostic algorithm, and the development of a psychological intervention and its evaluation in a clinical trial.
Women's Mental Health across the Reproductive Years
Children-Agent Interaction For Assessment and Rehabilitation: From Linguistic Skills To Mental Well-being
Socially Assistive Robots (SARs) have shown great potential to help children in therapeutic and healthcare contexts. SARs have been used for companionship, learning enhancement, social and communication skills rehabilitation for children with special needs (e.g., autism), and mood improvement. Robots can be used as novel tools to assess and rehabilitate children’s communication skills and mental well-being by providing affordable and accessible therapeutic and mental health services. In this talk, I will present the various studies I have conducted during my PhD and at the Cambridge Affective Intelligence and Robotics Lab to explore how robots can help assess and rehabilitate children’s communication skills and mental well-being. More specifically, I will provide both quantitative and qualitative results and findings from (i) an exploratory study with children with autism and global developmental disorders to investigate the use of intelligent personal assistants in therapy; (ii) an empirical study involving children with and without language disorders interacting with a physical robot, a virtual agent, and a human counterpart to assess their linguistic skills; (iii) an 8-week longitudinal study involving children with autism and language disorders who interacted either with a physical or a virtual robot to rehabilitate their linguistic skills; and (iv) an empirical study to aid the assessment of mental well-being in children. These findings can inform and help the child-robot interaction community design and develop new adaptive robots to help assess and rehabilitate linguistic skills and mental well-being in children.
Developmental disorders of presynaptic vesicle cycling - Synaptotagmin-1 and beyond
Post-diagnostic research on rare genetic developmental disorders presents new opportunities (and a few challenges) for discovery neuroscience and translation. In this talk, Kate will describe and discuss neurodevelopmental phenotypes arising from rare, high penetrance genomic variants which directly influence pre-synaptic vesicle cycling (SVC disorders). She will focus on Synaptotagmin-1 Associated Neurodevelopmental Disorder (also known as Baker Gordon Syndrome), first described in 2015 and now diagnosed in more than 50 children and young people worldwide. She will then present work-in-progress by her group on the neurodevelopmental spectrum of SVC disorders more broadly, and discuss opportunities for collaborative neuroscience which can bridge the gaps between genetic cause and complex neurological, cognitive and mental health outcomes.
Gut food cravings? How gut signals control appetite and metabolism
Gut-derived signals regulate metabolism, appetite, and behaviors important for mental health. We have performed a large-scale multidimensional screen to identify gut hormones and nutrient-sensing mechanisms in the intestine that regulate metabolism and behavior in the fruit fly Drosophila. We identified several gut hormones that affect fecundity, stress responses, metabolism, feeding, and sleep behaviors, many of which seem to act sex-specifically. We show that in response to nutrient intake, the enteroendocrine cells (EECs) of the adult Drosophila midgut release hormones that act via inter-organ relays to coordinate metabolism and feeding decisions. These findings suggest that crosstalk between the gut and other tissues regulates food choice according to metabolic needs, providing insight into how that intestine processes nutritional inputs and into the gut-derived signals that relay information regulating nutrient-specific hungers to maintain metabolic homeostasis.
Self-direction in daily stress management: the solution for mental health issues
In the lecture Yvette Roke and Jamie Hoefakker will discuss the positive and negative effects of daily stress on mental health. They will also highlight which characteristics are likely to cause more stress related issues, and why recovery time is very important. They will give an understanding of autism spectrum disorder (ASD) in relation to daily stress and they will discuss the app, SAM the stress autism mate, developed and investigated (SCED design) in co-creation with their patients with ASD.
How People Form Beliefs
In this talk I will present our recent behavioural and neuroscience research on how the brain motivates itself to form particular beliefs and why it does so. I will propose that the utility of a belief is derived from the potential outcomes associated with holding it. Outcomes can be internal (e.g., positive/negative feelings) or external (e.g., material gain/loss), and only some are dependent on belief accuracy. We show that belief change occurs when the potential outcomes of holding it alters, for example when moving from a safe environment to a threatening environment. Our findings yield predictions about how belief formation alters as a function of mental health. We test these predictions using a linguistic analysis of participants’ web searches ‘in the wild’ to quantify the affective properties of information they consume and relate those to reported psychiatric symptoms. Finally, I will present a study in which we used our framework to alter the incentive structure of social media platforms to reduce the spread of misinformation and improve belief accuracy.
Ebselen: a lithium-mimetic without lithium side-effects?
Development of new medications for mental health conditions is a pressing need given the high proportion of people not responding to available treatments. We hope that presenting ebselen to a wider audience will inspire further studies on this promising agent with a benign side-effects profile. Laboratory research, animal research and human studies suggest that ebselen shares many features with the mood stabilising drug lithium, creating a promise of a drug that would have a similar clinical effect but without lithium’s troublesome side-effect profile and toxicity. Both drugs have a common biological target, inositol monophosphatase, whose inhibition is thought key to lithium’s therapeutic effect. Both drugs have neuroprotective action and reduce oxidative stress. In animal studies, ebselen affected neurotransmitters involved in the development of mental health symptoms, and in particular, produced effects of serotonin function very similar to lithium. Both ebselen and lithium share behavioural effects: antidepressant-like effects in rodent models of depression and decrease in behavioural impulsivity, a property associated with lithium's anti-suicidal action. Human neuropsychological studies support an antidepressant profile for ebselen based on its positive impact on emotional processing and reward seeking. Our group currently is exploring ebselen’s effects in patients with mood disorders. A completed ‘add-on’ clinical trial in mania showed ebselen’s superiority over placebo after three weeks of treatment. Our ongoing experimental research explores ebselen’s antidepressant profile in patients with treatment resistant depression. If successful, this will lead to a clinical trial of ebselen as an antidepressant augmentation agent, similar to lithium.
Perception during visual disruptions
Visual perception is perceived as continuous despite frequent disruptions in our visual environment. For example, internal events, such as saccadic eye-movements, and external events, such as object occlusion temporarily prevent visual information from reaching the brain. Combining evidence from these two models of visual disruption (occlusion and saccades), we will describe what information is maintained and how it is updated across the sensory interruption. Lina Teichmann will focus on dynamic occlusion and demonstrate how object motion is processed through perceptual gaps. Grace Edwards will then describe what pre-saccadic information is maintained across a saccade and how it interacts with post-saccadic processing in retinotopically relevant areas of the early visual cortex. Both occlusion and saccades provide a window into how the brain bridges perceptual disruptions. Our evidence thus far suggests a role for extrapolation, integration, and potentially suppression in both models. Combining evidence from these typically separate fields enables us to determine if there is a set of mechanisms which support visual processing during visual disruptions in general.
Growing a world-class precision medicine industry
Monash Biomedical Imaging is part of the new $71.2 million Australian Precision Medicine Enterprise (APME) facility, which will deliver large-scale development and manufacturing of precision medicines and theranostic radiopharmaceuticals for industry and research. A key feature of the APME project is a high-energy cyclotron with multiple production clean rooms, which will be located on the Monash Biomedical Imaging (MBI) site in Clayton. This strategic co-location will facilitate radiochemistry, PET and SPECT research and clinical use of theranostic (therapeutic and diagnostic) radioisotopes produced on-site. In this webinar, MBI’s Professor Gary Egan and Dr Maggie Aulsebrook will explain how the APME will secure Australia’s supply of critical radiopharmaceuticals, build a globally competitive Australian manufacturing hub, and train scientists and engineers for the Australian workforce. They will cover the APME’s state-of-the-art 30 MeV and 18-24 MeV cyclotrons and radiochemistry facilities, as well as the services that will be accessible to students, scientists, clinical researchers, and pharmaceutical companies in Australia and around the world. The APME is a collaboration between Monash University, Global Medical Solutions Australia, and Telix Pharmaceuticals. Professor Gary Egan is Director of Monash Biomedical Imaging, Director of the ARC Centre of Excellence for Integrative Brain Function and a Distinguished Professor at the Turner Institute for Brain and Mental Health, Monash University. He is also lead investigator of the Victorian Biomedical Imaging Capability, and Deputy Director of the Australian National Imaging Facility. Dr Maggie Aulsebrook obtained her PhD in Chemistry at Monash University and specialises in the development and clinical translation of radiopharmaceuticals. She has led the development of several investigational radiopharmaceuticals for first-in-human application. Maggie leads the Radiochemistry Platform at Monash Biomedical Imaging.
CNStalk: Using machine learning to predict mental health on the basis of brain, behaviour and environment
Black Excellence in Psychology
Ruth Winifred Howard (March 25, 1900 – February 12, 1997) was one of the first African-American women to earn a Ph.D. in Psychology. Her research focused on children with special needs. Join us as we celebrate her birthday anniversary with 5 distinguished Psychologists.
The neuroscience of lifestyle interventions for mental health: the BrainPark approach
Our everyday behaviours, such as physical activity, sleep, diet, meditation, and social connections, have a potent impact on our mental health and the health of our brain. BrainPark is working to harness this power by developing lifestyle-based interventions for mental health and investigating how they do and don’t change the brain, and for whom they are most effective. In this webinar, Dr Rebecca Segrave and Dr Chao Suo will discuss BrainPark’s approach to developing lifestyle-based interventions to help people get better control of compulsive behaviours, and the multi-modality neuroimaging approaches they take to investigating outcomes. The webinar will explore two current BrainPark trials: 1. Conquering Compulsions - investigating the capacity of physical exercise and meditation to alter reward processing and help people get better control of a wide range of unhelpful habits, from drinking to eating to cleaning. 2. The Brain Exercise Addiction Trial (BEAT) - an NHMRC funded investigation into the capacity of physical exercise to reverse the brain harms caused by long-term heavy cannabis use. Dr Rebecca Segrave is Deputy Director and Head of Interventions Research at BrainPark, the David Winston Turner Senior Research Fellow within the Turner Institute for Brain and Mental Health, and an AHRPA registered Clinical Neuropsychologist. Dr Chao Suo is Head of Technology and Neuroimaging at BrainPark and a Research Fellow within the Turner Institute for Brain and Mental Health.
Network science and network medicine: New strategies for understanding and treating the biological basis of mental ill-health
The last twenty years have witnessed extraordinarily rapid progress in basic neuroscience, including breakthrough technologies such as optogenetics, and the collection of unprecedented amounts of neuroimaging, genetic and other data relevant to neuroscience and mental health. However, the translation of this progress into improved understanding of brain function and dysfunction has been comparatively slow. As a result, the development of therapeutics for mental health has stagnated too. One central challenge has been to extract meaning from these large, complex, multivariate datasets, which requires a shift towards systems-level mathematical and computational approaches. A second challenge has been reconciling different scales of investigation, from genes and molecules to cells, circuits, tissue, whole-brain, and ultimately behaviour. In this talk I will describe several strands of work using mathematical, statistical, and bioinformatic methods to bridge these gaps. Topics will include: using artificial neural networks to link the organization of large-scale brain connectivity to cognitive function; using multivariate statistical methods to link disease-related changes in brain networks to the underlying biological processes; and using network-based approaches to move from genetic insights towards drug discovey. Finally, I will discuss how simple organisms such as C. elegans can serve to inspire, test, and validate new methods and insights in networks neuroscience.
Emerging Treatment Options in Psychiatry
The World Health Organization (WHO) estimates that untreated mental disorders accountfor 13% of the total global burden of disease, and by 2030, depression alone will be the leadingcause of disability around the world – outpacing heart disease, cancer, and HIV. This grim pictureis further compounded by the mental health burden delivered by the coronavirus pandemic.The lack of novel treatment options in psychiatry is restricted by a limited understanding in theneuroscience basis of mental disorders, availability of relevant biomarkers, poor predictability inanimal models, and high failure rates in psychiatric drug development. However, theannouncement in 2019 from the Federal Drug Administration (FDA) for approvals of newinterventions for treatment-resistant depression (intranasal esketamine) and postpartumdepression (i.v. brexanolone), demand critical attention. Novel public-private partnerships indrug discovery, new translational data on co-morbid biology, in particular the ascendance ofpsycho-immunology, have highlighted the arrival of a new frontier in biological psychiatryresearch for depressive disorders.
Monash Biomedical Imaging highlights from 2021 and looking ahead to 2022
Despite the challenges COVID-19 has continued to present, Monash Biomedical Imaging (MBI) has had another outstanding year in terms of publications and scientific output. In this webinar, Professor Gary Egan, Director of MBI, will present an overview of MBI’s achievements during 2021 and outline the biomedical imaging research programs and partnerships in 2022. His presentation will cover: • MBI operational and research achievements during 2021 • Biomedical imaging technology developments and research outcomes during 2021 • Linked laboratories and research teams at MBI • Progress on the development of a cyclotron and precision radiopharmaceutical facility at Clayton • Emerging research opportunities at the Monash Heart Hospital in cardiology and cardiovascular disease. Professor Gary Egan is Director of Monash Biomedical Imaging, Director of the ARC Centre of Excellence for Integrative Brain Function and a Distinguished Professor at the Turner Institute for Brain and Mental Health, Monash University. He is also lead investigator of the Victorian Biomedical Imaging Capability, and Deputy Director of the Australian National Imaging Facility. His substantive body of published work has made a significant impact on the neuroimaging and neuroscience fields. He has sustained success in obtaining significant grants to support his own research and the development of facilities to advance biomedical imaging.
Nutritional psychiatry: diet and mental health over the lifecourse
Computational Models of Compulsivity
Neural mechanisms of altered states of consciousness under psychedelics
Interest in psychedelic compounds is growing due to their remarkable potential for understanding altered neural states and their breakthrough status to treat various psychiatric disorders. However, there are major knowledge gaps regarding how psychedelics affect the brain. The Computational Neuroscience Laboratory at the Turner Institute for Brain and Mental Health, Monash University, uses multimodal neuroimaging to test hypotheses of the brain’s functional reorganisation under psychedelics, informed by the accounts of hierarchical predictive processing, using dynamic causal modelling (DCM). DCM is a generative modelling technique which allows to infer the directed connectivity among brain regions using functional brain imaging measurements. In this webinar, Associate Professor Adeel Razi and PhD candidate Devon Stoliker will showcase a series of previous and new findings of how changes to synaptic mechanisms, under the control of serotonin receptors, across the brain hierarchy influence sensory and associative brain connectivity. Understanding these neural mechanisms of subjective and therapeutic effects of psychedelics is critical for rational development of novel treatments and for the design and success of future clinical trials. Associate Professor Adeel Razi is a NHMRC Investigator Fellow and CIFAR Azrieli Global Scholar at the Turner Institute of Brain and Mental Health, Monash University. He performs cross-disciplinary research combining engineering, physics, and machine-learning. Devon Stoliker is a PhD candidate at the Turner Institute for Brain and Mental Health, Monash University. His interest in consciousness and psychiatry has led him to investigate the neural mechanisms of classic psychedelic effects in the brain.
Metabolic and functional connectivity relate to distinct aspects of cognition
A major challenge of cognitive neuroscience is to understand how the brain as a network gives rise to our cognition. Simultaneous [18F]-fluorodeoxyglucose positron emission tomography functional magnetic resonance imaging (FDG-PET/fMRI) provides the opportunity to investigate brain connectivity not only via spatially distant, synchronous cerebrovascular hemodynamic responses (functional connectivity), but also glucose metabolism (metabolic connectivity). However, how these two modalities of brain connectivity differ in their relation to cognition is unknown. In this webinar, Dr Katharina Voigt will discuss recent findings demonstrating the advantage of simultaneous FDG-PET/fMRI in providing a more complete picture of the neural mechanisms underlying cognition, that calls for a combination of both modalities in future cognitive neuroscience. Dr Katharina Voigt is a Research Fellow within the Turner Institute for Brain and Mental Health, Monash University. Her research interests include systems neuroscience, simultaneous PET-MRI, and decision-making.
Understanding the Assessment of Spatial Neglect and its Treatment Using Prism Adaptation Training
Spatial neglect is a syndrome that is most frequently associated with damage to the right hemisphere, although damage to the left hemisphere can also result in signs of spatial neglect. It is characterised by absent or deficient awareness of the contralesional side of space. The screening and diagnosis of spatial neglect lacks a universal gold standard, but is usually achieved by using various modes of assessment. Spatial neglect is also difficult to treat, although prism adaptation training (PAT) has in the past reportedly showed some promise. This seminar will include highlights from a series of studies designed to identify knowledge gaps, and will suggest ways in which these can be bridged. The first study was conducted to identify and quantify clinicians’ use of assessment tools for spatial neglect, finding that several different tools are in use, but that there is an emerging consensus and appetite for harmonisation. The second study included PAT, and sought to uncover whether PAT can improve engagement in recommended therapy in order to improve the outcomes of stroke survivors with spatial neglect. The final study, a systematic review and meta-analysis, sought to investigate the scientific efficacy (rather than clinical effectiveness) of PAT, identifying several knowledge gaps in the existing literature and a need for a new approach in the study of PAT in the clinical setting.
The Social Brain: From Models to Mental Health
Given the complex and dynamic nature of our social relationships, the human brain needs to quickly learn and adapt to new social situations. The breakdown of any of these computations could lead to social deficits, as observed in many psychiatric disorders. In this talk, I will present our recent neurocomputational and intracranial work that attempts to model both 1) how humans dynamically adapt beliefs about other people and 2) how individuals can exert influence over social others through model-based forward thinking. Lastly, I will present our findings of how impaired social computations might manifest in different disorders such as addiction, delusion, and autism. Taken together, these findings reveal the dynamic and proactive nature of human interactions as well as the clinical significance of these high-order social processes.
The role of the primate prefrontal cortex in inferring the state of the world and predicting change
In an ever-changing environment, uncertainty is omnipresent. To deal with this, organisms have evolved mechanisms that allow them to take advantage of environmental regularities in order to make decisions robustly and adjust their behavior efficiently, thus maximizing their chances of survival. In this talk, I will present behavioral evidence that animals perform model-based state inference to predict environmental state changes and adjust their behavior rapidly, rather than slowly updating choice values. This model-based inference process can be described using Bayesian change-point models. Furthermore, I will show that neural populations in the prefrontal cortex accurately predict behavioral switches, and that the activity of these populations is associated with Bayesian estimates. In addition, we will see that learning leads to the emergence of a high-dimensional representational subspace that can be reused when the animals re-learn a previously learned set of action-value associations. Altogether, these findings highlight the role of the PFC in representing a belief about the current state of the world.
Integration of „environmental“ information in the neuronal epigenome
The inhibitory actions of the heterogeneous collection of GABAergic interneurons tremendously influence cortical information processing, which is reflected by diseases like autism, epilepsy and schizophrenia that involve defects in cortical inhibition. Apart from the regulation of physiological processes like synaptic transmission, proper interneuron function also relies on their correct development. Hence, decrypting regulatory networks that direct proper cortical interneuron development as well as adult functionality is of great interest, as this helps to identify critical events implicated in the etiology of the aforementioned diseases. Thereby, extrinsic factors modulate these processes and act on cell- and stage-specific transcriptional programs. Herein, epigenetic mechanisms of gene regulation, like DNA methylation executed by DNA methyltransferases (DNMTs), histone modifications and non-coding RNAs, call increasing attention in integrating “environmental information” in our genome and sculpting physiological processes in the brain relevant for human mental health. Several studies associate altered expression levels and function of the DNA methyltransferase 1 (DNMT1) in subsets of embryonic and adult cortical interneurons in patients diagnosed with schizophrenia. Although accumulating evidence supports the relevance of epigenetic signatures for instructing cell type-specific development, only very little is known about their functional implications in discrete developmental processes and in subtype-specific maturation of cortical interneurons. Similarly, little is known about the role of DNMT1 in regulating adult interneurons functionality. This talk will provide an overview about newly identified and roles DNMT1 has in orchestrating cortical interneuron development and adult function. Further, this talk will report about the implications of lncRNAs in mediating site-specific DNA methylation in response to discrete external stimuli.
Mechanistic insights from a mouse model of HCN1 developmental epileptic encephalopathy
Pathogenic variants in HCN1 are associated with severe developmental and epileptic encephalopathies (DEE). We have engineered the Hcn1 M294L heterozygous knock-in (Hcn1M294L) mouse which is a homolog of the de novo HCN1 M305L recurrent pathogenic variant. The mouse recapitulates the phenotypic features of patients including having spontaneous seizures and a learning deficit. In this talk I will present experimental work that probes the molecular and cellular mechanisms underlying hyper-excitability in the mouse model. This will include testing the efficacy of currently available antiepileptic drugs and a novel precision medicine approach. I will also briefly touch on how disease biology can give insights into the biophysical properties of HCN channels.
Neural stem cells as biomarkers of cognitive aging and dementia
Adult hippocampal neurogenesis is implicated in memory formation and mood regulation. The Thuret lab investigates environmental and molecular mechanisms controlling the production of these adult-born neurons and how they impact mental health. We study neurogenesis in healthy ageing as well as in the context of diseases such as Alzheimer’s and depression. By approaching neurogenesis in health and disease, the strategy is two folds: (i) Validating the neurogenic process as a target for prevention and pharmacological interventions. (ii) Developing neurogenesis as a biomarker of disease prediction and progression. In this talk, I will focus on presenting some recent human studies demonstrating how hippocampal neural stem cells fate can be used as biomarkers of cognitive aging and dementia.
Generative models of the human connectome
The human brain is a complex network of neuronal connections. The precise arrangement of these connections, otherwise known as the topology of the network, is crucial to its functioning. Recent efforts to understand how the complex topology of the brain has emerged have used generative mathematical models, which grow synthetic networks according to specific wiring rules. Evidence suggests that a wiring rule which emulates a trade-off between connection costs and functional benefits can produce networks that capture essential topological properties of brain networks. In this webinar, Professor Alex Fornito and Dr Stuart Oldham will discuss these previous findings, as well as their own efforts in creating more physiologically constrained generative models. Professor Alex Fornito is Head of the Brain Mapping and Modelling Research Program at the Turner Institute for Brain and Mental Health. His research focuses on developing new imaging techniques for mapping human brain connectivity and applying these methods to shed light on brain function in health and disease. Dr Stuart Oldham is a Research Fellow at the Turner Institute for Brain and Mental Health and a Research Officer at the Murdoch Children’s Research Institute. He is interested in characterising the organisation of human brain networks, with particular focus on how this organisation develops, using neuroimaging and computational tools.
Fragility of the human connectome across the lifespan
The human brain network architecture can reveal crucial aspects of brain function and dysfunction. The topology of this network (known as the connectome) is shaped by a trade-off between wiring cost and network efficiency, and it has highly connected hub regions playing a prominent role in many brain disorders. By studying a landscape of plausible brain networks that preserve the wiring cost, fragile and resilient hubs can be identified. In this webinar, Dr Leonardo Gollo and Dr James Pang from Monash University will discuss this approach across the lifespan and some of its implications for neurodevelopmental and neurodegenerative diseases. Dr Leonardo Gollo is a Senior Research Fellow at the Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University. He holds an ARC Future Fellowship and his research interests include brain modelling, systems neuroscience, and connectomics. Dr James Pang is a Research Fellow at the Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University. His research interests are on combining neuroimaging and biophysical modelling to better understand the mechanisms of brain function in health and disease.
The Picower Institute Spring 2021 Symposium: Early Life Stress & Mental Health
Though studies show that abuse, neglect or trauma during childhood can lead to lifelong lifelong struggles including in mental health, research also indicates that solutions and interventions at various stages of life can be developed to help. And while many people manage to remain resilient, a lack of opportunity early in life, including because of poverty and systemic racism, can constrain their ability to realize their full potential. In what ways are health and other outcomes affected? How can systems instead restore opportunity? "The Picower Institute for Learning and Memory's biennial spring symposium, 'Early Life Stress & Mental Health,' will examine these issues. The daylong event will feature talks by neuroscientists, policy experts, physicians, educators and activists as they discuss how our experiences and biology work together to affect how our minds develop and what can be accomplished in helping people overcome early disadvantages.
Unpacking Nature from Nurture: Understanding how Family Processes Affect Child and Adolescent Mental Health
Mental Health problems among youth constitutes an area of significant social, educational, clinical, policy and public health concern. Understanding processes and mechanisms that underlie the development of mental health problems during childhood and adolescence requires theoretical and methodological integration across multiple scientific domains, including developmental science, neuroscience, genetics, education and prevention science. The primary focus of this presentation is to examine the relative role of genetic and family environmental influences on children’s emotional and behavioural development. Specifically, a complementary array of genetically sensitive and longitudinal research designs will be employed to examine the role of early environmental adversity (e.g. inter-parental conflict, negative parenting practices) relative to inherited factors in accounting for individual differences in children’s symptoms of psychopathology (e.g. depression, aggression, ADHD ). Examples of recent applications of this research to the development of evidence-based intervention programmes aimed at reducing psychopathology in the context of high-risk family settings will also be presented.
A developmental-cognitive perspective on the impact of adolescent social media use
Concerns about the impact of social media use on adolescent well-being and mental health are common. While the amount of research in this area has increased rapidly over the last 5 years, most outputs are still marred by a multitude of limitations. These shortcomings have left our understanding of social media effects severely limited, holding back both scientific discovery and policy interventions. This talk discusses how developmental, cognitive and neuroscientific approaches might provide a new and improved way of studying social media effects. It will detail new studies in support of this idea, and raise potential avenues for collaborative work across the Cambridge Neuroscience community. As the digital world now (re)shapes what it means for us to live, communicate and develop, only an interdisciplinary approach will allow us to truly understand its impacts.
Making Memories in Mice
Towards better interoceptive biomarkers in computational psychiatry
Empirical evidence and theoretical models both increasingly emphasize the importance of interoceptive processing in mental health. Indeed, many mood and psychiatric disorders involve disturbed feelings and/or beliefs about the visceral body. However, current methods to measure interoceptive ability are limited in a number of ways, restricting the utility and interpretation of interoceptive biomarkers in psychiatry. I will present some newly developed measures and models which aim to improve our understanding of disordered brain-body interaction in psychiatric illnesses.
Cortical top-down control of social olfactory encoding
A multiscale approach to brain disorders
Reward processing in psychosis: adding meanings to the findings
Much of our daily behavior is driven by rewards. The ability to learn to pursue rewarding experiences is, in fact, an essential metric of mental health. Conversely, reduced capacity to engage in adaptive goal-oriented behavior is the hallmark of apathy, and present in the psychotic disorder. The search for its underlying mechanisms has resulted in findings of profound impairments in learning from rewards and the associated blunted activation in key reward areas of the brain of patients with psychosis. An emerging research field has been relying on digital phenotyping tools and ecological momentary assessments (EMA) that map patients’ current mood, behavior and context in the flow of their daily lives. Using these tools, we have started to see a different picture of apathy, one that is exquisitely driven by the environment. For one, reward sensitivity appears to be blunted by stressors, and exposure to undue chronic stress in the daily life may result in apathy in those predisposed to psychosis. Secondly, even patients with psychosis who exhibit clinically elevated levels of apathy are perfectly capable of seeking out and enjoying social interactions in their daily life, if their environment allows them to do so. The use of digital phenotyping tools in combination with neuroimaging of apathy not only allows us to add meanings to the neurobiological findings, but could also help design rational interventions.
Generation Covid-19: Should the fetus be worried?
Historically pregnant women and their unborn baby have been amongst those with the poorest outcomes in previous epidemics, most notably the Zika virus. For much of 2020, with the emergence of the novel coronavirus, the effect on the fetus remains unclear. While initial reports suggest that vertical transmission with SARS-CoV2 is reassuringly rare, the complex socioeconomic, domestic and broader maternal lifestyle factors which can influence a child’s lifelong well-being have been modulated during the experience of this pandemic. The developing brain is particularly susceptible to maternal stress, resulting in permanent structural changes and increased incidence of behavioural and mental health illness later in childhood. A large international longitudinal survey is being undertaken by the Department of Psychology to better understand the impact of the pandemic on those yet to be born.
Development of the social brain in adolescence and effects of social distancing
Adolescence is a period of life characterised by heightened sensitivity to social stimuli, an increased need for peer interaction and peer acceptance, and development of the social brain. Lockdown and social distancing measures intended to mitigate the spread of COVID-19 are reducing the opportunity to engage in face-to-face social interaction with peers. The consequences of social distancing on human social brain and social cognitive development are unknown, but animal research has shown that social deprivation and isolation have unique effects on brain and behaviour in adolescence compared with other stages of life. It is possible that social distancing might have a disproportionate effect on an age group for whom peer interaction is a vital aspect of development.
The early impact of COVID-19 on mental health and community physical health services and their patients’ mortality in Cambridgeshire and Peterborough, UK
COVID -19 has affected social interaction and healthcare worldwide. This talk will focus on the impact of the pandemic and “lockdown” on mental health services, community physical health services, and patient mortality in Cambridgeshire and Peterborough, based on the analysis of de-identified data from the primary NHS provider of secondary care mental health services to this population (~0.86 million)
Investigating the impact of the pandemic on adolescent anxiety and cognitive function
Meg was awarded funding to look into how the coronavirus pandemic has affected children's mental health and wellbeing.
The impact of Covid-19 on the mental health of children and young people
The recent pandemic arrived at a time when mental health of children and young people was deteriorating, particular among teenage girls and young women. Lockdown produced a plethora of mental health surveys, but very few of these had pre-pandemic data. This talk will summarise the current evidence of how covid-19 seems to have affected the mental health of children and young people from various studies in the UK.
Is the COVID-19 pandemic really causing mental illness?
Association of hallucinogen persisting perception disorder with trait neuroticism and mental health symptoms
FENS Forum 2024
Childhood trauma in the adult brain: The relationship between adverse childhood experiences, brain structure, and mental health in late adulthood
FENS Forum 2024
Larks or owls? That is the question – Chronotype, sleep, and mental health of international students
FENS Forum 2024