Metabolic Disease
metabolic disease
Why is the suprachiasmatic nucleus such a brilliant circadian time-keeper?
Circadian clocks dominate our lives. By creating and distributing an internal representation of 24-hour solar time, they prepare us, and thereby adapt us, to the daily and seasonal world. Jet-lag is an obvious indicator of what can go wrong when such adaptation is disrupted acutely. More seriously, the growing prevalence of rotational shift-work which runs counter to our circadian life, is a significant chronic challenge to health, presenting as increased incidence of systemic conditions such as metabolic and cardiovascular disease. Added to this, circadian and sleep disturbances are a recognised feature of various neurological and psychiatric conditions, and in some cases may contribute to disease progression. The “head ganglion” of the circadian system is the suprachiasmatic nucleus (SCN) of the hypothalamus. It synchronises the, literally, innumerable cellular clocks across the body, to each other and to solar time. Isolated in organotypic slice culture, it can maintain precise, high-amplitude circadian cycles of neural activity, effectively, indefinitely, just as it does in vivo. How is this achieved: how does this clock in a dish work? This presentation will consider SCN time-keeping at the level of molecular feedback loops, neuropeptidergic networks and neuron-astrocyte interactions.
The brain control of appetite: Can an old dog teach us new tricks?
It is clear that the cause of obesity is a result of eating more than you burn. It is physics. What is more complex to answer is why some people eat more than others? Differences in our genetic make-up mean some of us are slightly more hungry all the time and so eat more than others. We now know that the genetics of body-weight, on which obesity sits on one end of the spectrum, is in actuality the genetics of appetite control. In contrast to the prevailing view, body-weight is not a choice. People who are obese are not bad or lazy; rather, they are fighting their biology.
Towards resolving the Protein Paradox in longevity and late-life health
Reducing protein intake (and that of key amino acids) extends lifespan, especially during mid-life and early late-life. Yet, due to a powerful protein appetite, reducing protein in the diet leads to increased food intake, promoting obesity – which shortens lifespan. That is the protein paradox. In the talk I will bring together pieces of the jigsaw, including: specific nutrient appetites, protein leverage, macronutrient interactions on appetite and ageing, the role of branched-chain amino acids and FGF-21, and then I will conclude by showing how these pieces fit together and play out in the modern industrialised food environment to result in the global pandemic of obesity and metabolic disease.