← Back

Metabolic Disease

Topic spotlight
TopicWorld Wide

metabolic disease

Discover seminars, jobs, and research tagged with metabolic disease across World Wide.
3 curated items3 Seminars
Updated almost 4 years ago
3 items · metabolic disease
3 results
SeminarNeuroscienceRecording

Why is the suprachiasmatic nucleus such a brilliant circadian time-keeper?

Michael Hastings
MRC Laboratory of Molecular Biology, Cambridge
Feb 7, 2022

Circadian clocks dominate our lives. By creating and distributing an internal representation of 24-hour solar time, they prepare us, and thereby adapt us, to the daily and seasonal world. Jet-lag is an obvious indicator of what can go wrong when such adaptation is disrupted acutely. More seriously, the growing prevalence of rotational shift-work which runs counter to our circadian life, is a significant chronic challenge to health, presenting as increased incidence of systemic conditions such as metabolic and cardiovascular disease. Added to this, circadian and sleep disturbances are a recognised feature of various neurological and psychiatric conditions, and in some cases may contribute to disease progression. The “head ganglion” of the circadian system is the suprachiasmatic nucleus (SCN) of the hypothalamus. It synchronises the, literally, innumerable cellular clocks across the body, to each other and to solar time. Isolated in organotypic slice culture, it can maintain precise, high-amplitude circadian cycles of neural activity, effectively, indefinitely, just as it does in vivo. How is this achieved: how does this clock in a dish work? This presentation will consider SCN time-keeping at the level of molecular feedback loops, neuropeptidergic networks and neuron-astrocyte interactions.

SeminarNeuroscienceRecording

The brain control of appetite: Can an old dog teach us new tricks?

Giles Yeo
MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Labs
Nov 1, 2021

It is clear that the cause of obesity is a result of eating more than you burn. It is physics. What is more complex to answer is why some people eat more than others? Differences in our genetic make-up mean some of us are slightly more hungry all the time and so eat more than others. We now know that the genetics of body-weight, on which obesity sits on one end of the spectrum, is in actuality the genetics of appetite control. In contrast to the prevailing view, body-weight is not a choice. People who are obese are not bad or lazy; rather, they are fighting their biology.