Micrornas
microRNAs
MicroRNAs as targets in the epilepsies: hits, misses and complexes
MicroRNAs are small noncoding RNAs that provide a critical layer of gene expression control. Individual microRNAs variably exert effects across networks of genes via sequence-specific binding to mRNAs, fine-tuning protein levels. This helps coordinate the timing and specification of cell fate transitions during brain development and maintains neural circuit function and plasticity by activity-dependent (re)shaping of synapses and the levels of neurotransmitter components. MicroRNA levels have been found to be altered in tissue from the epileptogenic zone resected from adults with drug-resistant focal epilepsy and this has driven efforts to explore their therapeutic potential, in particular using antisense oligonucleotide (ASOs) inhibitors termed antimirs. Here, we review the molecular mechanisms by which microRNAs control brain excitability and the latest progress towards a microRNA-based treatment for temporal lobe epilepsy. We also look at whether microRNA-based approaches could be used to treat genetic epilepsies, correcting individual genes or dysregulated pathways. Finally, we look at how cells have evolved to maximise the efficiency of the microRNA system via RNA editing, where single base changes is capable of altering the repertoire of genes under the control of a single microRNA. The findings improve our understanding of the molecular landscape of the epileptic brain and may lead to new therapies.
Neuronal RNA signatures: Regulation and Function
Neurons are uniquely complex cells characterized by the expression of RNA sequences that are found in no other cell type: neuron-specific mRNA splice isoforms, circular RNAs, microRNAs, and ultra-long 3’UTRs. Although relatively little is known about how these neuronal RNA signatures control neuronal development and function, the importance of RNA-directed regulation in the brain is exemplified by its implication in neurological diseases. Our goal is to gain mechanistic and functional insight of the neuron-specific RNA landscape that drives neural function in health and disease.
Circulating microRNAs as biomarkers for Alzheimer’s disease
FENS Forum 2024
Circulating microRNAs and isomiRs as biomarkers for the initial insult and epileptogenesis in four experimental epilepsy models – The EPITARGET study
FENS Forum 2024
Differential roles for dysregulated microRNAs after a peripheral nerve injury in neuropathic pain or nerve regeneration
FENS Forum 2024
microRNAs regulating CaMKIIα/SIRT1 signaling pathway are associated with cognitive ability and academic performance in adolescents
FENS Forum 2024