← Back

Microswimmers

Topic spotlight
TopicWorld Wide

microswimmers

Discover seminars, jobs, and research tagged with microswimmers across World Wide.
4 curated items4 Seminars
Updated over 4 years ago
4 items · microswimmers
4 results
SeminarPhysics of LifeRecording

Trapping active particles up to the limiting case: bacteria enclosed in a biofilm

Chantal Valeriani
Complutense Madrid
May 25, 2021

Active matter systems are composed of constituents, each one in nonequilibrium, that consume energy in order to move [1]. A characteristic feature of active matter is collective motion leading to nonequilibrium phase transitions or large scale directed motion [2]. A number of recent works have featured active particles interacting with obstacles, either moving or fixed [3,4,5]. When an active particle encounters an asymmetric obstacle, different behaviours are detected depending on the nature of its active motion. On the one side, rectification effects arise in a suspension of run-and-tumble particles interacting with a wall of funnelled-shaped openings, caused by particles persistence length [6]. The same trapping mechanism could be responsible for the intake of microorganisms in the underground leaves [7] of Carnivorous plants [8]. On the other side, for aligning particles [9] interacting with a wall of funnelled-shaped openings, trapping happens on the (opposite) wider opening side of the funnels [10,11]. Interestingly, when funnels are located on a circular array, trapping is more localised and depends on the nature of the Vicsek model. Active particles can be synthetic (such as synthetic active colloids) or alive (such as living bacteria). A prototypical model to study living microswimmers is P. fluorescens, a rod shaped and biofilm forming bacterium. Biofilms are microbial communities self-assembled onto external interfaces. Biofilms can be described within the Soft Matter physics framework [12] as a viscoelastic material consisting of colloids (bacterial cells) embedded in a cross-linked polymer gel (polysaccharides cross-linked via proteins/multivalent cations), whose water content vary depending on the environmental conditions. Bacteria embedded in the polymeric matrix control biofilm structure and mechanical properties by regulating its matrix composition. We have recently monitored structural features of Pseudomonas fluorescens biofilms grown with and without hydrodynamic stress [13,14]. We have demonstrated that bacteria are capable of self-adapting to hostile hydrodynamic stress by tailoring the biofilm chemical composition, thus affecting both the mesoscale structure of the matrix and its viscoelastic properties that ultimately regulate the bacteria-polymer interactions. REFERENCES [1] C. Bechinger et al. Rev. Mod. Phys. 88, 045006 (2016); [2] T. Vicsek, A. Zafeiris Phys. Rep. 517, 71 (2012); [3] C. Bechinger, R. Di Leonardo, H. Lowen, C. Reichhardt, G. Volpe, and G. Volpe, Reviews of Modern Physics 88, 045006 (2016); [4] R Martinez, F Alarcon, DR Rodriguez, JL Aragones, C Valeriani The European Physical Journal E 41, 1 (2018); [5] DR Rodriguez, F Alarcon, R Martinez, J Ramírez, C Valeriani, Soft matter 16 (5), 1162 (2020); [6] C. O. Reichhardt and C. Reichhardt, Annual Review of Condensed Matter
Physics 8, 51 (2017); [7] W Barthlott, S Porembski, E Fischer, B Gemmel Nature 392, 447 (1998); [8] C B. Giuliano, R Zhang, R.Martinez Fernandez, C.Valeriani and L.Wilson (in preparation, 2021); [9] R Martinez, F Alarcon, JL Aragones, C Valeriani Soft matter 16 (20), 4739 (2020); [10] P. Galajada, J. Keymer, P. Chaikin and R.Austin, Journal of bacteriology, 189, 8704 (2007); [11] M. Wan, C.O. Reichhardt, Z. Nussinov, and C. Reichhardt, Physical Review Letters 101, 018102 (2008); [12] J N. Wilking , T E. Angelini , A Seminara , M P. Brenner , and D A. Weitz MRS Bulletin 36, 385 (2011); [13]J Jara, F Alarcón, A K Monnappa, J Ignacio Santos, V Bianco, P Nie, M Pica Ciamarra, A Canales, L Dinis, I López-Montero, C Valeriani, B Orgaz, Frontiers in microbiology 11, 3460 (2021); [14] P Nie, F Alarcon, I López-Montero, B Orgaz, C Valeriani, M Pica Ciamarra

SeminarPhysics of LifeRecording

Inertial active soft matter

Hartmut Löwen
universität düsseldorf
Mar 23, 2021

Active particles which are self-propelled by converting energy into mechanical motion represent an expanding research realm in physics and chemistry. For micron-sized particles moving in a liquid (``microswimmers''), most of the basic features have been described by using the model of overdamped active Brownian motion [1]. However, for macroscopic particles or microparticles moving in a gas, inertial effects become relevant such that the dynamics is underdamped. Therefore, recently, active particles with inertia have been described by extending the active Brownian motion model to active Langevin dynamics which include inertia [2]. In this talk, recent developments of active particles with inertia (``microflyers'', ``hoppers'' or ``runners'') are summarized including: inertial delay effects between particle velocity and self-propulsion direction [3], tuning of the long-time self-diffusion by the moment of inertia [3], the influence of inertia on motility-induced phase separation and the cluster growth exponent [4], and the formation of active micelles (“rotelles”) by using inertial active surfactants. References [1] C. Bechinger, R. di Leonardo, H. Löwen, C. Reichhardt, G. Volpe, G. Volpe, Reviews of Modern Physics 88, 045006 (2016). [2] H. Löwen, Journal of Chemical Physics 152, 040901 (2020). [3] C. Scholz, S. Jahanshahi, A. Ldov, H. Löwen, Nature Communications 9, 5156 (2018). [4] S. Mandal, B. Liebchen, H. Löwen, Physical Review Letters 123, 228001 (2019). [5] C. Scholz, A. Ldov, T. Pöschel, M. Engel, H. Löwen, Surfactants and rotelles in active chiral fluids, will be published

SeminarPhysics of LifeRecording

Light-bacteria interactions

Roberto Di Leonardo
Sapienza University of Rome
Feb 2, 2021

In 1676, using candle light and a small glass sphere as the lens, van Leeuwenhoek discovered the microscopic world of living microorganisms. Today, using lasers, spatial light modulators, digital cameras and computers, we study the statistical and fluid mechanics of microswimmers in ways that were unimaginable only 50 years ago. With light we can image swimming bacteria in 3D, apply controllable force fields or sculpt their 3D environment. In addition to shaping the physical world outside cells we can use light to control the internal state of genetically modified bacteria. I will review our recent work with light-bacteria interactions, going from some fundamental problems in the fluid and statistical mechanics of microswimmers to the use of bacteria as propellers for micro-machines or as a "living" paint controlled by light.

SeminarPhysics of Life

Motility control in biological microswimmers

Kirsty Wan
University of Exeter
Sep 29, 2020

It is often assumed that biological swimmers conform faithfully to certain stereotypes assigned to them by physicists and mathematicians, when the reality is in fact much more complicated. In this talk we will use a combination of theory, experiments, and robotics, to understand the physical and evolutionary basis of motility control in a number of distinguished organisms. These organisms differ markedly in terms of their size, shape, and arrangement of locomotor appendages, but are united in their use of cilia - the ultimate shape-shifting organelle - to achieve self-propulsion and navigation.