Mind
mind
AutoMIND: Deep inverse models for revealing neural circuit invariances
A personal journey on understanding intelligence
The focus of this talk is not about my research in AI or Robotics but my own journey on trying to do research and understand intelligence in a rapidly evolving research landscape. I will trace my path from conducting early-stage research during graduate school, to working on practical solutions within a startup environment, and finally to my current role where I participate in more structured research at a major tech company. Through these varied experiences, I will provide different perspectives on research and talk about how my core beliefs on intelligence have changed and sometimes even been compromised. There are no lessons to be learned from my stories, but hopefully they will be entertaining.
Understanding reward-guided learning using large-scale datasets
Understanding the neural mechanisms of reward-guided learning is a long-standing goal of computational neuroscience. Recent methodological innovations enable us to collect ever larger neural and behavioral datasets. This presents opportunities to achieve greater understanding of learning in the brain at scale, as well as methodological challenges. In the first part of the talk, I will discuss our recent insights into the mechanisms by which zebra finch songbirds learn to sing. Dopamine has been long thought to guide reward-based trial-and-error learning by encoding reward prediction errors. However, it is unknown whether the learning of natural behaviours, such as developmental vocal learning, occurs through dopamine-based reinforcement. Longitudinal recordings of dopamine and bird songs reveal that dopamine activity is indeed consistent with encoding a reward prediction error during naturalistic learning. In the second part of the talk, I will talk about recent work we are doing at DeepMind to develop tools for automatically discovering interpretable models of behavior directly from animal choice data. Our method, dubbed CogFunSearch, uses LLMs within an evolutionary search process in order to "discover" novel models in the form of Python programs that excel at accurately predicting animal behavior during reward-guided learning. The discovered programs reveal novel patterns of learning and choice behavior that update our understanding of how the brain solves reinforcement learning problems.
Functional Imaging of the Human Brain: A Window into the Organization of the Human Mind
Open Hardware Microfluidics
What’s the point of having scientific and technological innovations when only a few can benefit from them? How can we make science more inclusive? Those questions are always in the back of my mind when we perform research in our laboratory, and we have a strong focus on the scientific accessibility of our developed methods from microfabrication to sensor development.
Understanding reward-guided learning using large-scale datasets
Understanding the neural mechanisms of reward-guided learning is a long-standing goal of computational neuroscience. Recent methodological innovations enable us to collect ever larger neural and behavioral datasets. This presents opportunities to achieve greater understanding of learning in the brain at scale, as well as methodological challenges. In the first part of the talk, I will discuss our recent insights into the mechanisms by which zebra finch songbirds learn to sing. Dopamine has been long thought to guide reward-based trial-and-error learning by encoding reward prediction errors. However, it is unknown whether the learning of natural behaviours, such as developmental vocal learning, occurs through dopamine-based reinforcement. Longitudinal recordings of dopamine and bird songs reveal that dopamine activity is indeed consistent with encoding a reward prediction error during naturalistic learning. In the second part of the talk, I will talk about recent work we are doing at DeepMind to develop tools for automatically discovering interpretable models of behavior directly from animal choice data. Our method, dubbed CogFunSearch, uses LLMs within an evolutionary search process in order to "discover" novel models in the form of Python programs that excel at accurately predicting animal behavior during reward-guided learning. The discovered programs reveal novel patterns of learning and choice behavior that update our understanding of how the brain solves reinforcement learning problems.
Skin-brain axis for tactile sensations
Digital Minds: Brain Development in the Age of Technology
Digital Minds: Brain Development in the Age of Technology examines how our increasingly connected world shapes mental and cognitive health. From screen time and social media to virtual interactions, this seminar delves into the latest research on how technology influences brain development, relationships, and emotional well-being. Join us to explore strategies for harnessing technology's benefits while mitigating its potential challenges, empowering you to thrive in a digital age.
Contentopic mapping and object dimensionality - a novel understanding on the organization of object knowledge
Our ability to recognize an object amongst many others is one of the most important features of the human mind. However, object recognition requires tremendous computational effort, as we need to solve a complex and recursive environment with ease and proficiency. This challenging feat is dependent on the implementation of an effective organization of knowledge in the brain. Here I put forth a novel understanding of how object knowledge is organized in the brain, by proposing that the organization of object knowledge follows key object-related dimensions, analogously to how sensory information is organized in the brain. Moreover, I will also put forth that this knowledge is topographically laid out in the cortical surface according to these object-related dimensions that code for different types of representational content – I call this contentopic mapping. I will show a combination of fMRI and behavioral data to support these hypotheses and present a principled way to explore the multidimensionality of object processing.
The Brain Prize winners' webinar
This webinar brings together three leaders in theoretical and computational neuroscience—Larry Abbott, Haim Sompolinsky, and Terry Sejnowski—to discuss how neural circuits generate fundamental aspects of the mind. Abbott illustrates mechanisms in electric fish that differentiate self-generated electric signals from external sensory cues, showing how predictive plasticity and two-stage signal cancellation mediate a sense of self. Sompolinsky explores attractor networks, revealing how discrete and continuous attractors can stabilize activity patterns, enable working memory, and incorporate chaotic dynamics underlying spontaneous behaviors. He further highlights the concept of object manifolds in high-level sensory representations and raises open questions on integrating connectomics with theoretical frameworks. Sejnowski bridges these motifs with modern artificial intelligence, demonstrating how large-scale neural networks capture language structures through distributed representations that parallel biological coding. Together, their presentations emphasize the synergy between empirical data, computational modeling, and connectomics in explaining the neural basis of cognition—offering insights into perception, memory, language, and the emergence of mind-like processes.
Decision and Behavior
This webinar addressed computational perspectives on how animals and humans make decisions, spanning normative, descriptive, and mechanistic models. Sam Gershman (Harvard) presented a capacity-limited reinforcement learning framework in which policies are compressed under an information bottleneck constraint. This approach predicts pervasive perseveration, stimulus‐independent “default” actions, and trade-offs between complexity and reward. Such policy compression reconciles observed action stochasticity and response time patterns with an optimal balance between learning capacity and performance. Jonathan Pillow (Princeton) discussed flexible descriptive models for tracking time-varying policies in animals. He introduced dynamic Generalized Linear Models (Sidetrack) and hidden Markov models (GLM-HMMs) that capture day-to-day and trial-to-trial fluctuations in choice behavior, including abrupt switches between “engaged” and “disengaged” states. These models provide new insights into how animals’ strategies evolve under learning. Finally, Kenji Doya (OIST) highlighted the importance of unifying reinforcement learning with Bayesian inference, exploring how cortical-basal ganglia networks might implement model-based and model-free strategies. He also described Japan’s Brain/MINDS 2.0 and Digital Brain initiatives, aiming to integrate multimodal data and computational principles into cohesive “digital brains.”
Mind Perception and Behaviour: A Study of Quantitative and Qualitative Effects
Beyond Homogeneity: Characterizing Brain Disorder Heterogeneity through EEG and Normative Modeling
Electroencephalography (EEG) has been thoroughly studied for decades in psychiatry research. Yet its integration into clinical practice as a diagnostic/prognostic tool remains unachieved. We hypothesize that a key reason is the underlying patient's heterogeneity, overlooked in psychiatric EEG research relying on a case-control approach. We combine HD-EEG with normative modeling to quantify this heterogeneity using two well-established and extensively investigated EEG characteristics -spectral power and functional connectivity- across a cohort of 1674 patients with attention-deficit/hyperactivity disorder, autism spectrum disorder, learning disorder, or anxiety, and 560 matched controls. Normative models showed that deviations from population norms among patients were highly heterogeneous and frequency-dependent. Deviation spatial overlap across patients did not exceed 40% and 24% for spectral and connectivity, respectively. Considering individual deviations in patients has significantly enhanced comparative analysis, and the identification of patient-specific markers has demonstrated a correlation with clinical assessments, representing a crucial step towards attaining precision psychiatry through EEG.
Modelling the fruit fly brain and body
Through recent advances in microscopy, we now have an unprecedented view of the brain and body of the fruit fly Drosophila melanogaster. We now know the connectivity at single neuron resolution across the whole brain. How do we translate these new measurements into a deeper understanding of how the brain processes sensory information and produces behavior? I will describe two computational efforts to model the brain and the body of the fruit fly. First, I will describe a new modeling method which makes highly accurate predictions of neural activity in the fly visual system as measured in the living brain, using only measurements of its connectivity from a dead brain [1], joint work with Jakob Macke. Second, I will describe a whole body physics simulation of the fruit fly which can accurately reproduce its locomotion behaviors, both flight and walking [2], joint work with Google DeepMind.
Mitochondrial diversity in the mouse and human brain
The basis of the mind, of mental states, and complex behaviors is the flow of energy through microscopic and macroscopic brain structures. Energy flow through brain circuits is powered by thousands of mitochondria populating the inside of every neuron, glial, and other nucleated cell across the brain-body unit. This seminar will cover emerging approaches to study the mind-mitochondria connection and present early attempts to map the distribution and diversity of mitochondria across brain tissue. In rodents, I will present convergent multimodal evidence anchored in enzyme activities, gene expression, and animal behavior that distinct behaviorally-relevant mitochondrial phenotypes exist across large-scale mouse brain networks. Extending these findings to the human brain, I will present a developing systematic biochemical and molecular map of mitochondrial variation across cortical and subcortical brain structures, representing a foundation to understand the origin of complex energy patterns that give rise to the human mind.
Analogy and Law
Abstracts: https://sites.google.com/site/analogylist/analogical-minds-seminar/analogy-and-law-symposium
Ganzflicker: Using light-induced hallucinations to predict risk factors of psychosis
Rhythmic flashing light, or “Ganzflicker”, can elicit altered states of consciousness and hallucinations, bringing your mind’s eye out into the real world. What do you experience if you have a super mind’s eye, or none at all? In this talk, I will discuss how Ganzflicker has been used to simulate psychedelic experiences, how it can help us predict symptoms of psychosis, and even tap into the neural basis of hallucinations.
Maintaining Plasticity in Neural Networks
Nonstationarity presents a variety of challenges for machine learning systems. One surprising pathology which can arise in nonstationary learning problems is plasticity loss, whereby making progress on new learning objectives becomes more difficult as training progresses. Networks which are unable to adapt in response to changes in their environment experience plateaus or even declines in performance in highly non-stationary domains such as reinforcement learning, where the learner must quickly adapt to new information even after hundreds of millions of optimization steps. The loss of plasticity manifests in a cluster of related empirical phenomena which have been identified by a number of recent works, including the primacy bias, implicit under-parameterization, rank collapse, and capacity loss. While this phenomenon is widely observed, it is still not fully understood. This talk will present exciting recent results which shed light on the mechanisms driving the loss of plasticity in a variety of learning problems and survey methods to maintain network plasticity in non-stationary tasks, with a particular focus on deep reinforcement learning.
Neural Circuits that connect Body and Mind
From controlled environments to complex realities: Exploring the interplay between perceived minds and attention
In our daily lives, we perceive things as possessing a mind (e.g., people) or lacking one (e.g., shoes). Intriguingly, how much mind we attribute to people can vary, with real people perceived to have more mind than depictions of individuals, such as photographs. Drawing from a range of research methodologies, including naturalistic observation, mobile eye tracking, and surreptitious behavior monitoring, I discuss how various shades of mind influence human attention and behaviour. The findings suggest the novel concept that overt attention (where one looks) in real-life is fundamentally supported by covert attention (attending to someone out of the corner of one's eye).
Anticipating behaviour through working memory (BACN Early Career Prize Lecture 2023)
Working memory is about the past but for the future. Adopting such a future-focused perspective shifts the narrative of working memory as a limited-capacity storage system to working memory as an anticipatory buffer that helps us prepare for potential and sequential upcoming behaviour. In my talk, I will present a series of our recent studies that have started to reveal emerging principles of a working memory that looks forward – highlighting, amongst others, how selective attention plays a vital role in prioritising internal contents for behaviour, and the bi-directional links between visual working memory and action. These studies show how studying the dynamics of working memory, selective attention, and action together paves way for an integrated understanding of how mind serves behaviour.
Studies on the role of relevance appraisal in affect elicitation
A fundamental question in affective sciences is how the human mind decides if, and in what intensity, to elicit an affective response. Appraisal theories assume that preceding the affective response, there is an evaluation stage in which dimensions of an event are being appraised. Common to most appraisal theories is the assumption that the evaluation phase involves the assessment of the stimulus’ relevance to the perceiver’s well-being. In this talk, I first discuss conceptual and methodological challenges in investigating relevance appraisal. Next, I present two lines of experiments that ask how the human mind uses information about objective and subjective probabilities in the decision about the intensity of the emotional response and how these are affected by the valence of the event. The potential contribution of the results to appraisal theory is discussed.
Why robots? A brief introduction to the use of robots in psychological research
Why should psychologists be interested in robots? This talk aims to illustrate how social robots – machines with human-like features and behaviors – can offer interesting insights into the human mind. I will first provide a brief overview of how robots have been used in psychology and cognitive science research focusing on two approaches - Developmental Robotics and Human-Robot Interaction (HRI). We will then delve into recent works in HRI, including my own, in greater detail. We will also address the limitations of research thus far, such as the lack of proper controlled experiments, and discuss how the scientific community should evaluate the use of technology in educational and other social settings.
Consciousness in the age of mechanical minds
We are now clearly entering a new age in our relationship with machines. The power of AI natural language processors and image generators has rapidly exceeded the expectations of even those who developed them. Serious questions are now being asked about the extent to which machines could become — or perhaps already are — sentient or conscious. Do AI machines understand the instructions they are given and the answers they provide? In this talk I will consider the prospects for conscious machines, by which I mean machines that have feelings, know about their own existence, and about ours. I will suggest that the recent focus on information processing in models of consciousness, in which the brain is treated as a kind of digital computer, have mislead us about the nature of consciousness and how it is produced in biological systems. Treating the brain as an energy processing system is more likely to yield answers to these fundamental questions and help us understand how and when machines might become minds.
The Picower Institute Spring 2023 Symposium "Environmental and Social Determinants of Child Mental Health
Studies show that abuse, neglect or trauma during childhood can lead to lifelong struggles including with mental health. Fortunately research also indicates that solutions and interventions at various stages of life can be developed to help. But even among people who remain resilient or do not experience acute stresses, a lack of opportunity early in life due to poverty or systemic racism can still constrain their ability to realize their full potential. In what ways are health and other outcomes affected by early life difficulty? What can individuals and institutions do to enhance opportunity?" "This daylong event will feature talks by neuroscientists, policy experts, physicians, educators and activists as they discuss how our experiences and biology work together to affect how our minds develop and what can be accomplished in helping people overcome early disadvantages.
The embodied brain
Understanding the brain is not only intrinsically fascinating, but also highly relevant to increase our well-being since our brain exhibits a power over the body that makes it capable both of provoking illness or facilitating the healing process. Bearing in mind this dark force, brain sciences have undergone and will undergo an important revolution, redefining its boundaries beyond the cranial cavity. During this presentation, we will discuss about the communication between the brain and other systems that shapes how we feel the external word and how we think. We are starting to unravel how our organs talk to the brain and how the brain talks back. That two-way communication encompasses a complex, body-wide system of nerves, hormones and other signals that will be discussed. This presentation aims at challenging a long history of thinking of bodily regulation as separate from "higher" mental processes. Four centuries ago, René Descartes famously conceptualized the mind as being separate from the body, it is time now to embody our mind.
A new science of emotion: How brain-mind-body processes form functional neurological disorder
One of the most common medical conditions you’ve (maybe) never heard of – functional neurological disorder – lays at the interface of neurology and psychiatry and offers a window into fundamental brain-mind-body processes. Across ancient and modern times, functional neurological disorder has had a long and tumultuous history, with an evolving debate and understanding of how biopsychosocial factors contribute to the manifestation of the disorder. A central issue in contemporary discussions has revolved around questioning the extent to which emotions play a mechanistic and aetiological role in functional neurological disorder. Critical in this context, however, is that this ongoing debate has largely omitted the question of what emotions are in the first place. This talk first brings together advances in the understanding of working principles of the brain fundamental to introducing a new understanding of what emotions are. Building on recent theoretical frameworks from affective neuroscience, the idea of how the predictive process of emotion construction can be an integral component of the pathophysiology of functional neurological disorder is discussed.
Relations and Predictions in Brains and Machines
Humans and animals learn and plan with flexibility and efficiency well beyond that of modern Machine Learning methods. This is hypothesized to owe in part to the ability of animals to build structured representations of their environments, and modulate these representations to rapidly adapt to new settings. In the first part of this talk, I will discuss theoretical work describing how learned representations in hippocampus enable rapid adaptation to new goals by learning predictive representations, while entorhinal cortex compresses these predictive representations with spectral methods that support smooth generalization among related states. I will also cover recent work extending this account, in which we show how the predictive model can be adapted to the probabilistic setting to describe a broader array of generalization results in humans and animals, and how entorhinal representations can be modulated to support sample generation optimized for different behavioral states. In the second part of the talk, I will overview some of the ways in which we have combined many of the same mathematical concepts with state-of-the-art deep learning methods to improve efficiency and performance in machine learning applications like physical simulation, relational reasoning, and design.
Spatial matching tasks for insect minds: relational similarity in bumblebees
Understanding what makes human unique is a fundamental research drive for comparative psychologists. Cognitive abilities such as theory of mind, cooperation or mental time travel have been considered uniquely human. Despite empirical evidence showing that animals other than humans are able (to some extent) of these cognitive achievements, findings are still heavily contested. In this context, being able to abstract relations of similarity has also been considered one of the hallmarks of human cognition. While previous research has shown that other animals (e.g., primates) can attend to relational similarity, less is known about what invertebrates can do. In this talk, I will present a series of spatial matching tasks that previously were used with children and great apes and that I adapted for use with wild-caught bumblebees. The findings from these studies suggest striking similarities between vertebrates and invertebrates in their abilities to attend to relational similarity.
Autopoiesis and Enaction in the Game of Life
Enaction plays a central role in the broader fabric of so-called 4E (embodied, embedded, extended, enactive) cognition. Although the origin of the enactive approach is widely dated to the 1991 publication of the book "The Embodied Mind" by Varela, Thompson and Rosch, many of the central ideas trace to much earlier work. Over 40 years ago, the Chilean biologists Humberto Maturana and Francisco Varela put forward the notion of autopoiesis as a way to understand living systems and the phenomena that they generate, including cognition. Varela and others subsequently extended this framework to an enactive approach that places biological autonomy at the foundation of situated and embodied behavior and cognition. I will describe an attempt to place Maturana and Varela's original ideas on a firmer foundation by studying them within the context of a toy model universe, John Conway's Game of Life (GoL) cellular automata. This work has both pedagogical and theoretical goals. Simple concrete models provide an excellent vehicle for introducing some of the core concepts of autopoiesis and enaction and explaining how these concepts fit together into a broader whole. In addition, a careful analysis of such toy models can hone our intuitions about these concepts, probe their strengths and weaknesses, and move the entire enterprise in the direction of a more mathematically rigorous theory. In particular, I will identify the primitive processes that can occur in GoL, show how these can be linked together into mutually-supporting networks that underlie persistent bounded entities, map the responses of such entities to environmental perturbations, and investigate the paths of mutual perturbation that these entities and their environments can undergo.
Fragile minds in a scary world: trauma and post traumatic stress in very young children
Post traumatic stress disorder (PTSD) is a prevalent and disabling condition that affects larger numbers of children and adolescents worldwide. Until recently, we have understood little about the nature of PTSD reactions in our youngest children (aged under 8 years old). This talk describes our work over the last 15 years working with this very young age group. It overviews how we need a markedly different PTSD diagnosis for very young children, data on the prevalence of this new diagnostic algorithm, and the development of a psychological intervention and its evaluation in a clinical trial.
Analogical inference in mathematics: from epistemology to the classroom (and back)
In this presentation, we will discuss adaptations of historical examples of mathematical research to bring out some of the intuitive judgments that accompany the working practice of mathematicians when reasoning by analogy. The main epistemological claim that we will aim to illustrate is that a central part of mathematical training consists in developing a quasi-perceptual capacity to distinguish superficial from deep analogies. We think of this capacity as an instance of Hadamard’s (1954) discriminating faculty of the mathematical mind, whereby one is led to distinguish between mere “hookings” (77) and “relay-results” (80): on the one hand, suggestions or ‘hints’, useful to raise questions but not to back up conjectures; on the other, more significant discoveries, which can be used as an evidentiary source in further mathematical inquiry. In the second part of the presentation, we will present some recent applications of this epistemological framework to mathematics education projects for middle and high schools in Italy.
Basal Ganglia
The power of structured representations (and how to learn them)
Neural Dynamics of Cognitive Control
Cognitive control guides behavior by controlling what, where, and how information is represented in the brain. Perhaps the most well-studied form of cognitive control has been ‘attention’, which controls how external sensory stimuli are represented in the brain. In contrast, the neural mechanisms controlling the selection of representations held ‘in mind’, in working memory, are unknown. In this talk, I will present evidence that the prefrontal cortex controls working memory by selectively enhancing and transforming the contents of working memory. In particular, I will show how the neural representation of the content of working memory changes over time, moving between different ‘subspaces’ of the neural population. These dynamics may play a critical role in controlling what and how neural representations are acted upon.
The embodied brain
Understanding the brain is not only intrinsically fascinating, but also highly relevant to increase our well-being since our brain exhibits a power over the body that makes it capable both of provoking illness or facilitating the healing process. Bearing in mind this dark force, brain sciences have undergone and will undergo an important revolution, redefining its boundaries beyond the cranial cavity. During this presentation, we will discuss about the communication between the brain and other systems that shapes how we feel the external word and how we think. We are starting to unravel how our organs talk to the brain and how the brain talks back. That two-way communication encompasses a complex, body-wide system of nerves, hormones and other signals that will be discussed. This presentation aims at challenging a long history of thinking of bodily regulation as separate from "higher" mental processes. Four centuries ago, René Descartes famously conceptualized the mind as being separate from the body, it is time now to embody our mind.
Amortized inference in mind and brain
Exploring emotion in the expression of ape gesture
Language appears to be the most complex system of animal communication described to date. However, its precursors were present in the communication of our evolutionary ancestors and are likely shared by our modern ape cousins. All great apes, including humans, employ a rich repertoire of vocalizations, facial expressions, and gestures. Great ape gestural repertoires are particularly elaborate, with ape species employing over 80 different gesture types intentionally: that is towards a recipient with a specific goal in mind. Intentional usage allows us to ask not only what information is encoded in ape gestures, but what do apes mean when they use them. I will discuss recent research on ape gesture, on how we approach the question of decoding meaning, and how with new methods we are starting to integrate long overlooked aspects of ape gesture such as group and individual variation, and expression and emotion into our study of these signals.
Neurosurgery for Mental Disorders: Challenging Mindsets; Combining Neuroimaging and Neurophysiology in Parkinson’s Disease
On Wednesday, October 26th, at noon ET / 6PM CET, we will host Kara Johnson, PhD, and Ludvic Zrinzo, MD PhD, for the inaugural session of our newly conceived talk series format entitled "Stimulating Brains". Kara A. Johnson, a postdoctoral fellow in Dr. Coralie de Hemptinne’s lab at the University of Florida, will present her work on “Combining imaging and neurophysiology in Parkinson’s disease”. Ludvic Zrinzo, Professor of functional neurosurgery and head of the University College London functional neurosurgery unit, will give us a glimpse at the “Person behind the science”, and give a talk on “Neurosurgery for mental disorders: challenging mindsets”. The talks will be followed by a shared discussion. You can register via talks.stimulatingbrains.org to receive the (free) Zoom link!
Social Curiosity
In this lecture, I would like to share with the broad audience the empirical results gathered and the theoretical advancements made in the framework of the Lendület project entitled ’The cognitive basis of human sociality’. The main objective of this project was to understand the mechanisms that enable the unique sociality of humans, from the angle of cognitive science. In my talk, I will focus on recent empirical evidence in the study of three fundamental social cognitive functions (social categorization, theory of mind and social learning; mainly from the empirical lenses of developmental psychology) in order to outline a theory that emphasizes the need to consider their interconnectedness. The proposal is that the ability to represent the social world along categories and the capacity to read others’ minds are used in an integrated way to efficiently assess the epistemic states of fellow humans by creating a shared representational space. The emergence of this shared representational space is both the result of and a prerequisite to efficient learning about the physical and social environment.
Is Theory of Mind Analogical? Evidence from the Analogical Theory of Mind cognitive model
Theory of mind, which consists of reasoning about the knowledge, belief, desire, and similar mental states of others, is a key component of social reasoning and social interaction. While it has been studied by cognitive scientists for decades, none of the prevailing theories of the processes that underlie theory of mind reasoning and development explain the breadth of experimental findings. I propose that this is because theory of mind is, like much of human reasoning, inherently analogical. In this talk, I will discuss several theory of mind findings from the psychology literature, the challenges they pose for our understanding of theory of mind, and bring in evidence from the Analogical Theory of Mind (AToM) cognitive model that demonstrates how these findings fit into an analogical understanding of theory of mind reasoning.
The brain: A coincidence detector between sensory experiences and internal milieu
Understanding the brain is not only intrinsically fascinating, but also highly relevant to increase our well-being since our brain exhibits a power over the body that makes it capable both of provoking illness or facilitating the healing process. Bearing in mind this dark force, brain sciences have undergone and will undergo an important revolution, redefining its boundaries beyond the cranial cavity. During this presentation, we will discuss about the communication between the brain and other systems that shapes how we feel the external word and how we think. We are starting to unravel how our organs talk to the brain and how the brain talks back. That two-way communication encompasses a complex, bodywide system of nerves, hormones and other signals that we will discussed. This presentation aims at challenging a long history of thinking of bodily regulation as separate from "higher" mental processes. Four centuries ago, René Descartes famously conceptualized the mind as being separate from the body, it is time now to embody our mind.
UCL NeuroAI annual half day event (hybrid)
A mind set in stone: fossil traces of human brain evolution
Brains do not fossilise, but as they grow and expand during fetal and infant development, they leave an imprint in the bony braincase. Such imprints of fossilised braincases provide direct evidence of brain evolution, but the underlying biological changes have remained elusive. Combining data from fossil skulls, ancient genomes, brain imaging and gene expression helps shed light on the evolutionary changes shaping the human brain. I will highlight two examples separated by more than 3 million years: the evolution of brain growth in Lucy and her kind, and differences between modern humans and Neanderthals.
Chemistry of the adaptive mind: lessons from dopamine
The human brain faces a variety of computational dilemmas, including the flexibility/stability, the speed/accuracy and the labor/leisure tradeoff. I will argue that striatal dopamine is particularly well suited to dynamically regulate these computational tradeoffs depending on constantly changing task demands. This working hypothesis is grounded in evidence from recent studies on learning, motivation and cognitive control in human volunteers, using chemical PET, psychopharmacology, and/or fMRI. These studies also begin to elucidate the mechanisms underlying the huge variability in catecholaminergic drug effects across different individuals and across different task contexts. For example, I will demonstrate how effects of the most commonly used psychostimulant methylphenidate on learning, Pavlovian and effortful instrumental control depend on fluctuations in current environmental volatility, on individual differences in working memory capacity and on opportunity cost respectively.
The Standard Model of the Retina
The science of the retina has reached an interesting stage of completion. There exists now a consensus standard model of this neural system - at least in the minds of many researchers - that serves as a baseline against which to evaluate new claims. The standard model links phenomena from molecular biophysics, cell biology, neuroanatomy, synaptic physiology, circuit function, and visual psychophysics. It is further supported by a normative theory explaining what the purpose is of processing visual information this way. Most new reports of retinal phenomena fit squarely within the standard model, and major revisions seem increasingly unlikely. Given that our understanding of other brain circuits with comparable complexity is much more rudimentary, it is worth considering an example of what success looks like. In this talk I will summarize what I think are the ingredients that led to this mature understanding of the retina. Equally important, a number of practices and concepts that are currently en vogue in neuroscience were not needed or indeed counterproductive. I look forward to debating how these lessons might extend to other areas of brain research.
Neural circuits of visuospatial working memory
One elementary brain function that underlies many of our cognitive behaviors is the ability to maintain parametric information briefly in mind, in the time scale of seconds, to span delays between sensory information and actions. This component of working memory is fragile and quickly degrades with delay length. Under the assumption that behavioral delay-dependencies mark core functions of the working memory system, our goal is to find a neural circuit model that represents their neural mechanisms and apply it to research on working memory deficits in neuropsychiatric disorders. We have constrained computational models of spatial working memory with delay-dependent behavioral effects and with neural recordings in the prefrontal cortex during visuospatial working memory. I will show that a simple bump attractor model with weak inhomogeneities and short-term plasticity mechanisms can link neural data with fine-grained behavioral output in a trial-by-trial basis and account for the main delay-dependent limitations of working memory: precision, cardinal repulsion biases and serial dependence. I will finally present data from participants with neuropsychiatric disorders that suggest that serial dependence in working memory is specifically altered, and I will use the model to infer the possible neural mechanisms affected.
Brain and Mind: Who is the Puppet and who the Puppeteer?
If the mind controls the brain, then there is free will and its corollaries, dignity and responsibility. You are king in your skull-sized kingdom and the architect of your destiny. If, on the other hand, the brain controls the mind, an incendiary conclusion follows: There can be no free will, no praise, no punishment and no purgatory. In this webinar, Professor George Paxinos will discuss his highly respected work on the construction of human and experimental animal brain atlases. He has discovered 94 brain regions, 64 homologies and published 58 books. His first book, The Rat Brain in Stereotaxic Coordinates, is the most cited publication in neuroscience and, for three decades, the third most cited book in science. Professor Paxinos will also present his recently published novel, A River Divided, which was 21 years in the making. Neuroscience principles were used in the formation of charters, such as those related to the mind, soul, free will and consciousness. Environmental issues are at the heart of the novel, including the question of whether the brain is the right ‘size’ for survival. Professor Paxinos studied at Berkeley, McGill and Yale and is now Scientia Professor of Medical Sciences at Neuroscience Research Australia and The University of New South Wales in Sydney.
Four questions about brain and behaviour
Tinbergen encouraged ethologists to address animal behaviour by answering four questions, covering physiology, adaptation, phylogeny, and development. This broad approach has implications for neuroscience and psychology, yet, questions about phylogeny are rarely considered in these fields. Here I describe how phylogeny can shed light on our understanding of brain structure and function. Further, I show that we now have or are developing the data and analytical methods necessary to study the natural history of the human mind.
Eliminativism about Neural Representation
Growing Up in Academia with Christof Koch
Join us for a deep talk with Christof Koch, Chief Scientist of the MindScope Program, Allen Institute for Brain Science
fMRI of cognitive reappraisal, acceptance, and suppression emotion regulation strategies in basic and clinically applied contexts
The ability to effectively regulate emotions is a fundamental skill related to physical and psychological health. In this talk, I will present behavioral and fMRI data from several different studies that examined cognitive reappraisal, acceptance, and suppression emotion regulation strategies in healthy controls participants and in the context of randomized trials of cognitive behavioral therapy, mindfulness- based stress reduction, and aerobic exercise as interventions for adults with anxiety disorders. We will also examine the implementation of different types of functional connectivity analytic approaches to probe intervention-related brain mechanism changes.
Connecting structure and function in early visual circuits
How does the brain interpret signals from the outside world? Walking through a park, you might take for granted the ease with which you can understand what you see. Rather than seeing a series of still snapshots, you are able to see simple, fluid movement — of dogs running, squirrels foraging, or kids playing basketball. You can track their paths and know where they are headed without much thought. “How does this process take place?” asks Rudy Behnia, PhD, a principal investigator at Columbia’s Mortimer B. Zuckerman Mind Brain Behavior Institute. “For most of us, it’s hard to imagine a world where we can’t see motion, shapes, and color; where we can’t have a representation of the physical world in our head.” And yet this representation does not happen automatically — our brain has no direct connection with the outside world. Instead, it interprets information taken in by our senses. Dr. Behnia is studying how the brain builds these representations. As a starting point, she focuses on how we see motion
How sleep contributes to visual perceptual learning
Sleep is crucial for the continuity and development of life. Sleep-related problems can alter brain function, and cause potentially severe psychological and behavioral consequences. However, the role of sleep in our mind and behavior is far from clear. In this talk, I will present our research on how sleep may play a role in visual perceptual learning (VPL) by using simultaneous magnetic resonance spectroscopy and polysomnography in human subjects. We measured the concentrations of neurotransmitters in the early visual areas during sleep and obtained the excitation/inhibition (E/I) ratio which represents the amount of plasticity in the visual system. We found that the E/I ratio significantly increased during NREM sleep while it decreased during REM sleep. The E/I ratio during NREM sleep was correlated with offline performance gains by sleep, while the E/I ratio during REM sleep was correlated with the amount of learning stabilization. These suggest that NREM sleep increases plasticity, while REM sleep decreases it to solidify once enhanced learning. NREM and REM sleep may play complementary roles, reflected by significantly different neurochemical processing, in VPL.
Artificial Intelligence and Racism – What are the implications for scientific research?
As questions of race and justice have risen to the fore across the sciences, the ALBA Network has invited Dr Shakir Mohamed (Senior Research Scientist at DeepMind, UK) to provide a keynote speech on Artificial Intelligence and racism, and the implications for scientific research, that will be followed by a discussion chaired by Dr Konrad Kording (Department of Neuroscience at University of Pennsylvania, US - neuromatch co-founder)
Interdisciplinary College
The Interdisciplinary College is an annual spring school which offers a dense state-of-the-art course program in neurobiology, neural computation, cognitive science/psychology, artificial intelligence, machine learning, robotics and philosophy. It is aimed at students, postgraduates and researchers from academia and industry. This year's focus theme "Flexibility" covers (but not be limited to) the nervous system, the mind, communication, and AI & robotics. All this will be packed into a rich, interdisciplinary program of single- and multi-lecture courses, and less traditional formats.
What is Cognitive Neuropsychology Good For? An Unauthorized Biography
Abstract: There is no doubt that the study of brain damaged individuals has contributed greatly to our understanding of the mind/brain. Within this broad approach, cognitive neuropsychology accentuates the cognitive dimension: it investigates the structure and organization of perceptual, motor, cognitive, and language systems – prerequisites for understanding the functional organization of the brain – through the analysis of their dysfunction following brain damage. Significant insights have come specifically from this paradigm. But progress has been slow and enthusiasm for this approach has waned somewhat in recent years, and the use of existing findings to constrain new theories has also waned. What explains the current diminished status of cognitive neuropsychology? One reason may be failure to calibrate expectations about the effective contribution of different subfields of the study of the mind/brain as these are determined by their natural peculiarities – such factors as the types of available observations and their complexity, opportunity of access to such observations, the possibility of controlled experimentation, and the like. Here, I also explore the merits and limitations of cognitive neuropsychology, with particular focus on the role of intellectual, pragmatic, and societal factors that determine scientific practice within the broader domains of cognitive science/neuroscience. I conclude on an optimistic note about the continuing unique importance of cognitive neuropsychology: although limited to the study of experiments of nature, it offers a privileged window into significant aspects of the mind/brain that are not easily accessible through other approaches. Biography: Alfonso Caramazza's research has focussed extensively on how words and their meanings are represented in the brain. His early pioneering studies helped to reformulate our thinking about Broca's aphasia (not limited to production) and formalised the logic of patient-based neuropsychology. More recently he has been instrumental in reconsidering popular claims about embodied cognition.
Keeping visual cortex in the back of your mind: From visual inputs to behavior and memory
Towards a recipe for physical reasoning in humans and machines
The pervasive role of visuospatial coding
Historically, retinotopic organisation (the spatial mapping of the retina across the cortical surface) was considered the purview of early regions of visual cortex (V1-V4) only and that anterior, more cognitively involved regions abstracted this information away. The contemporary view is quite different. Here, with Advancing technologies and analysis methods, we see that retinotopic information is not simply thrown away by these regions but rather is maintained to the potential benefit of our broader cognition. This maintenance of visuospatial coding extends not only through visual cortex, but is present in parietal, frontal, medial and subcortical structures involved with coordinating-movements, mind-wandering and even memory. In this talk, I will outline some of the key empirical findings from my own work and the work of others that shaped this contemporary perspective.
Mind the gradient: context-dependent selectivity to natural images in the retina revealed with a novel perturbative approach
COSYNE 2022
Mind the gradient: context-dependent selectivity to natural images in the retina revealed with a novel perturbative approach
COSYNE 2022
Generative models for building a worm's mind
COSYNE 2023
Assessing the effects of mindful breathing on learning and emotions in primary school students
FENS Forum 2024
BearMind: A pipeline for batch examination & analysis of raw miniscopic neural data
FENS Forum 2024
GPT-4 can recognize Theory of Mind in natural conversations: fMRI evidence
FENS Forum 2024
Investigating embodied mind-wandering during a naturalistic anxiety-inducing film
FENS Forum 2024
The neural construction of the movies of our minds
FENS Forum 2024
Reflections of minds? Exploring behavioral and neural similarity in friend dyads
FENS Forum 2024