Misinformation
misinformation
Short and Synthetically Distort: Investor Reactions to Deepfake Financial News
Recent advances in artificial intelligence have led to new forms of misinformation, including highly realistic “deepfake” synthetic media. We conduct three experiments to investigate how and why retail investors react to deepfake financial news. Results from the first two experiments provide evidence that investors use a “realism heuristic,” responding more intensely to audio and video deepfakes as their perceptual realism increases. In the third experiment, we introduce an intervention to prompt analytical thinking, varying whether participants make analytical judgments about credibility or intuitive investment judgments. When making intuitive investment judgments, investors are strongly influenced by both more and less realistic deepfakes. When making analytical credibility judgments, investors are able to discern the non-credibility of less realistic deepfakes but struggle with more realistic deepfakes. Thus, while analytical thinking can reduce the impact of less realistic deepfakes, highly realistic deepfakes are able to overcome this analytical scrutiny. Our results suggest that deepfake financial news poses novel threats to investors.
How People Form Beliefs
In this talk I will present our recent behavioural and neuroscience research on how the brain motivates itself to form particular beliefs and why it does so. I will propose that the utility of a belief is derived from the potential outcomes associated with holding it. Outcomes can be internal (e.g., positive/negative feelings) or external (e.g., material gain/loss), and only some are dependent on belief accuracy. We show that belief change occurs when the potential outcomes of holding it alters, for example when moving from a safe environment to a threatening environment. Our findings yield predictions about how belief formation alters as a function of mental health. We test these predictions using a linguistic analysis of participants’ web searches ‘in the wild’ to quantify the affective properties of information they consume and relate those to reported psychiatric symptoms. Finally, I will present a study in which we used our framework to alter the incentive structure of social media platforms to reduce the spread of misinformation and improve belief accuracy.
Visual working memory representations are distorted by their use in perceptual comparisons
Visual working memory (VWM) allows us to maintain a small amount of task-relevant information in mind so that we can use them to guide our behavior. Although past studies have successfully characterized its capacity limit and representational quality during maintenance, the consequence of its usage for task-relevant behaviors has been largely unknown. In this talk, I will demonstrate that VWM representations get distorted when they are used for perceptual comparisons with new visual inputs, especially when the inputs are subjectively similar to the VWM representations. Furthermore, I will show that this similarity-induced memory bias (SIMB) occurs for both simple (e.g. , color, shape) and complex stimuli (e.g., real world objects, faces) that are perceptually encoded and retrieved from long-term memory. Given the observed versatility of the SIMB, its implication for other memory distortion phenomena (e.g., distractor-induced distortion, misinformation effect) will be discussed.