Monkey
monkey
Roles of inhibition in stabilizing and shaping the response of cortical networks
Inhibition has long been thought to stabilize the activity of cortical networks at low rates, and to shape significantly their response to sensory inputs. In this talk, I will describe three recent collaborative projects that shed light on these issues. (1) I will show how optogenetic excitation of inhibition neurons is consistent with cortex being inhibition stabilized even in the absence of sensory inputs, and how this data can constrain the coupling strengths of E-I cortical network models. (2) Recent analysis of the effects of optogenetic excitation of pyramidal cells in V1 of mice and monkeys shows that in some cases this optogenetic input reshuffles the firing rates of neurons of the network, leaving the distribution of rates unaffected. I will show how this surprising effect can be reproduced in sufficiently strongly coupled E-I networks. (3) Another puzzle has been to understand the respective roles of different inhibitory subtypes in network stabilization. Recent data reveal a novel, state dependent, paradoxical effect of weakening AMPAR mediated synaptic currents onto SST cells. Mathematical analysis of a network model with multiple inhibitory cell types shows that this effect tells us in which conditions SST cells are required for network stabilization.
Internal representation of musical rhythm: transformation from sound to periodic beat
When listening to music, humans readily perceive and move along with a periodic beat. Critically, perception of a periodic beat is commonly elicited by rhythmic stimuli with physical features arranged in a way that is not strictly periodic. Hence, beat perception must capitalize on mechanisms that transform stimulus features into a temporally recurrent format with emphasized beat periodicity. Here, I will present a line of work that aims to clarify the nature and neural basis of this transformation. In these studies, electrophysiological activity was recorded as participants listened to rhythms known to induce perception of a consistent beat across healthy Western adults. The results show that the human brain selectively emphasizes beat representation when it is not acoustically prominent in the stimulus, and this transformation (i) can be captured non-invasively using surface EEG in adult participants, (ii) is already in place in 5- to 6-month-old infants, and (iii) cannot be fully explained by subcortical auditory nonlinearities. Moreover, as revealed by human intracerebral recordings, a prominent beat representation emerges already in the primary auditory cortex. Finally, electrophysiological recordings from the auditory cortex of a rhesus monkey show a significant enhancement of beat periodicities in this area, similar to humans. Taken together, these findings indicate an early, general auditory cortical stage of processing by which rhythmic inputs are rendered more temporally recurrent than they are in reality. Already present in non-human primates and human infants, this "periodized" default format could then be shaped by higher-level associative sensory-motor areas and guide movement in individuals with strongly coupled auditory and motor systems. Together, this highlights the multiplicity of neural processes supporting coordinated musical behaviors widely observed across human cultures.The experiments herein include: a motor timing task comparing the effects of movement vs non-movement with and without feedback (Exp. 1A & 1B), a transcranial magnetic stimulation (TMS) study on the role of the supplementary motor area (SMA) in transforming temporal information (Exp. 2), and a perceptual timing task investigating the effect of noisy movement on time perception with both visual and auditory modalities (Exp. 3A & 3B). Together, the results of these studies support the Bayesian cue combination framework, in that: movement improves the precision of time perception not only in perceptual timing tasks but also motor timing tasks (Exp. 1A & 1B), stimulating the SMA appears to disrupt the transformation of temporal information (Exp. 2), and when movement becomes unreliable or noisy there is no longer an improvement in precision of time perception (Exp. 3A & 3B). Although there is support for the proposed framework, more studies (i.e., fMRI, TMS, EEG, etc.) need to be conducted in order to better understand where and how this may be instantiated in the brain; however, this work provides a starting point to better understanding the intrinsic connection between time and movement
Distinct contributions of different anterior frontal regions to rule-guided decision-making in primates: complementary evidence from lesions, electrophysiology, and neurostimulation
Different prefrontal areas contribute in distinctly different ways to rule-guided behaviour in the context of a Wisconsin Card Sorting Test (WCST) analog for macaques. For example, causal evidence from circumscribed lesions in NHPs reveals that dorsolateral prefrontal cortex (dlPFC) is necessary to maintain a reinforced abstract rule in working memory, orbitofrontal cortex (OFC) is needed to rapidly update representations of rule value, and the anterior cingulate cortex (ACC) plays a key role in cognitive control and integrating information for correct and incorrect trials over recent outcomes. Moreover, recent lesion studies of frontopolar cortex (FPC) suggest it contributes to representing the relative value of unchosen alternatives, including rules. Yet we do not understand how these functional specializations relate to intrinsic neuronal activities nor the extent to which these neuronal activities differ between different prefrontal regions. After reviewing the aforementioned causal evidence I will present our new data from studies using multi-area multi-electrode recording techniques in NHPs to simultaneously record from four different prefrontal regions implicated in rule-guided behaviour. Multi-electrode micro-arrays (‘Utah arrays’) were chronically implanted in dlPFC, vlPFC, OFC, and FPC of two macaques, allowing us to simultaneously record single and multiunit activity, and local field potential (LFP), from all regions while the monkey performs the WCST analog. Rule-related neuronal activity was widespread in all areas recorded but it differed in degree and in timing between different areas. I will also present preliminary results from decoding analyses applied to rule-related neuronal activities both from individual clusters and also from population measures. These results confirm and help quantify dynamic task-related activities that differ between prefrontal regions. We also found task-related modulation of LFPs within beta and gamma bands in FPC. By combining this correlational recording methods with trial-specific causal interventions (electrical microstimulation) to FPC we could significantly enhance and impair animals performance in distinct task epochs in functionally relevant ways, further consistent with an emerging picture of regional functional specialization within a distributed framework of interacting and interconnected cortical regions.
Precise spatio-temporal spike patterns in cortex and model
The cell assembly hypothesis postulates that groups of coordinated neurons form the basis of information processing. Here, we test this hypothesis by analyzing massively parallel spiking activity recorded in monkey motor cortex during a reach-to-grasp experiment for the presence of significant ms-precise spatio-temporal spike patterns (STPs). For this purpose, the parallel spike trains were analyzed for STPs by the SPADE method (Stella et al, 2019, Biosystems), which detects, counts and evaluates spike patterns for their significance by the use of surrogates (Stella et al, 2022 eNeuro). As a result we find STPs in 19/20 data sets (each of 15min) from two monkeys, but only a small fraction of the recorded neurons are involved in STPs. To consider the different behavioral states during the task, we analyzed the data in a quasi time-resolved analysis by dividing the data into behaviorally relevant time epochs. The STPs that occur in the various epochs are specific to behavioral context - in terms of neurons involved and temporal lags between the spikes of the STP. Furthermore we find, that the STPs often share individual neurons across epochs. Since we interprete the occurrence of a particular STP as the signature of a particular active cell assembly, our interpretation is that the neurons multiplex their cell assembly membership. In a related study, we model these findings by networks with embedded synfire chains (Kleinjohann et al, 2022, bioRxiv 2022.08.02.502431).
Toward the neural basis of joint attention: studies in humans and monkeys
Representation of Sequences in Human and Monkey Brains
Orientation selectivity in rodent V1: theory vs experiments
Neurons in the primary visual cortex (V1) of rodents are selective to the orientation of the stimulus, as in other mammals such as cats and monkeys. However, in contrast with those species, their neurons display a very different type of spatial organization. Instead of orientation maps they are organized in a “salt and pepper” pattern, where adjacent neurons have completely different preferred orientations. This structure has motivated both experimental and theoretical research with the objective of determining which aspects of the connectivity patterns and intrinsic neuronal responses can explain the observed behavior. These analysis have to take into account also that the neurons of the thalamus that send their outputs to the cortex have more complex responses in rodents than in higher mammals, displaying, for instance, a significant degree of orientation selectivity. In this talk we present work showing that a random feed-forward connectivity pattern, in which the probability of having a connection between a cortical neuron and a thalamic neuron depends only on the relative distance between them is enough explain several aspects of the complex phenomenology found in these systems. Moreover, this approach allows us to evaluate analytically the statistical structure of the thalamic input on the cortex. We find that V1 neurons are orientation selective but the preferred orientation of the stimulus depends on the spatial frequency of the stimulus. We disentangle the effect of the non circular thalamic receptive fields, finding that they control the selectivity of the time-averaged thalamic input, but not the selectivity of the time locked component. We also compare with experiments that use reverse correlation techniques, showing that ON and OFF components of the aggregate thalamic input are spatially segregated in the cortex.
Unique features of oxygen delivery to the mammalian retina
Like all neural tissue, the retina has a high metabolic demand, and requires a constant supply of oxygen. Second and third order neurons are supplied by the retinal circulation, whose characteristics are similar to brain circulation. However, the photoreceptor region, which occupies half of the retinal thickness, is avascular, and relies on diffusion of oxygen from the choroidal circulation, whose properties are very different, as well as the retinal circulation. By fitting diffusion models to oxygen measurements made with oxygen microelectrodes, it is possible to understand the relative roles of the two circulations under normal conditions of light and darkness, and what happens if the retina is detached or the retinal circulation is occluded. Most of this work has been done in vivo in rat, cat, and monkey, but recent work in the isolated mouse retina will also be discussed.
Sampling the environment with body-brain rhythms
Since Darwin, comparative research has shown that most animals share basic timing capacities, such as the ability to process temporal regularities and produce rhythmic behaviors. What seems to be more exclusive, however, are the capacities to generate temporal predictions and to display anticipatory behavior at salient time points. These abilities are associated with subcortical structures like basal ganglia (BG) and cerebellum (CE), which are more developed in humans as compared to nonhuman animals. In the first research line, we investigated the basic capacities to extract temporal regularities from the acoustic environment and produce temporal predictions. We did so by adopting a comparative and translational approach, thus making use of a unique EEG dataset including 2 macaque monkeys, 20 healthy young, 11 healthy old participants and 22 stroke patients, 11 with focal lesions in the BG and 11 in the CE. In the second research line, we holistically explore the functional relevance of body-brain physiological interactions in human behavior. Thus, a series of planned studies investigate the functional mechanisms by which body signals (e.g., respiratory and cardiac rhythms) interact with and modulate neurocognitive functions from rest and sleep states to action and perception. This project supports the effort towards individual profiling: are individuals’ timing capacities (e.g., rhythm perception and production), and general behavior (e.g., individual walking and speaking rates) influenced / shaped by body-brain interactions?
A premotor amodal clock for rhythmic tapping
We recorded and analyzed the population activity of hundreds of neurons in the medial premotor areas (MPC) of rhesus monkeys performing an isochronous tapping task guided by brief flashing stimuli or auditory tones. The animals showed a strong bias towards visual metronomes, with rhythmic tapping that was more precise and accurate than for auditory metronomes. The population dynamics in state space as well as the corresponding neural sequences shared the following properties across modalities: the circular dynamics of the neural trajectories and the neural sequences formed a regenerating loop for every produced interval, producing a relative time representation; the trajectories converged in similar state space at tapping times while the moving bumps restart at this point, resetting the beat-based clock; the tempo of the synchronized tapping was encoded by a combination of amplitude modulation and temporal scaling in the neural trajectories. In addition, the modality induced a displacement in the neural trajectories in auditory and visual subspaces without greatly altering time keeping mechanism. These results suggest that the interaction between the amodal internal representation of pulse within MPC and a modality specific external input generates a neural rhythmic clock whose dynamics define the temporal execution of tapping using auditory and visual metronomes.
It’s All About Motion: Functional organization of the multisensory motion system at 7T
The human middle temporal complex (hMT+) has a crucial biological relevance for the processing and detection of direction and speed of motion in visual stimuli. In both humans and monkeys, it has been extensively investigated in terms of its retinotopic properties and selectivity for direction of moving stimuli; however, only in recent years there has been an increasing interest in how neurons in MT encode the speed of motion. In this talk, I will explore the proposed mechanism of speed encoding questioning whether hMT+ neuronal populations encode the stimulus speed directly, or whether they separate motion into its spatial and temporal components. I will characterize how neuronal populations in hMT+ encode the speed of moving visual stimuli using electrocorticography ECoG and 7T fMRI. I will illustrate that the neuronal populations measured in hMT+ are not directly tuned to stimulus speed, but instead encode speed through separate and independent spatial and temporal frequency tuning. Finally, I will suggest that this mechanism may play a role in evaluating multisensory responses for visual, tactile and auditory stimuli in hMT+.
A neural mechanism for terminating decisions
The brain makes decisions by accumulating evidence until there is enough to stop and choose. Neural mechanisms of evidence accumulation are well established in association cortex, but the site and mechanism of termination is unknown. Here, we elucidate a mechanism for termination by neurons in the primate superior colliculus. We recorded simultaneously from neurons in lateral intraparietal cortex (LIP) and the superior colliculus (SC) while monkeys made perceptual decisions, reported by eye-movements. Single-trial analyses revealed distinct dynamics: LIP tracked the accumulation of evidence on each decision, and SC generated one burst at the end of the decision, occasionally preceded by smaller bursts. We hypothesized that the bursts manifest a threshold mechanism applied to LIP activity to terminate the decision. Focal inactivation of SC produced behavioral effects diagnostic of an impaired threshold sensor, requiring a stronger LIP signal to terminate a decision. The results reveal the transformation from deliberation to commitment.
Nonlinear neural network dynamics accounts for human confidence in a sequence of perceptual decisions
Electrophysiological recordings during perceptual decision tasks in monkeys suggest that the degree of confidence in a decision is based on a simple neural signal produced by the neural decision process. Attractor neural networks provide an appropriate biophysical modeling framework, and account for the experimental results very well. However, it remains unclear whether attractor neural networks can account for confidence reports in humans. We present the results from an experiment in which participants are asked to perform an orientation discrimination task, followed by a confidence judgment. Here we show that an attractor neural network model quantitatively reproduces, for each participant, the relations between accuracy, response times and confidence. We show that the attractor neural network also accounts for confidence-specific sequential effects observed in the experiment (participants are faster on trials following high confidence trials), as well as non confidence-specific sequential effects. Remarkably, this is obtained as an inevitable outcome of the network dynamics, without any feedback specific to the previous decision (that would result in, e.g., a change in the model parameters before the onset of the next trial). Our results thus suggest that a metacognitive process such as confidence in one’s decision is linked to the intrinsically nonlinear dynamics of the decision-making neural network.
Optimal information loading into working memory in prefrontal cortex
Working memory involves the short-term maintenance of information and is critical in many tasks. The neural circuit dynamics underlying working memory remain poorly understood, with different aspects of prefrontal cortical (PFC) responses explained by different putative mechanisms. By mathematical analysis, numerical simulations, and using recordings from monkey PFC, we investigate a critical but hitherto ignored aspect of working memory dynamics: information loading. We find that, contrary to common assumptions, optimal information loading involves inputs that are largely orthogonal, rather than similar, to the persistent activities observed during memory maintenance. Using a novel, theoretically principled metric, we show that PFC exhibits the hallmarks of optimal information loading and we find that such dynamics emerge naturally as a dynamical strategy in task-optimized recurrent neural networks. Our theory unifies previous, seemingly conflicting theories of memory maintenance based on attractor or purely sequential dynamics, and reveals a normative principle underlying the widely observed phenomenon of dynamic coding in PFC.
Efficient Random Codes in a Shallow Neural Network
Efficient coding has served as a guiding principle in understanding the neural code. To date, however, it has been explored mainly in the context of peripheral sensory cells with simple tuning curves. By contrast, ‘deeper’ neurons such as grid cells come with more complex tuning properties which imply a different, yet highly efficient, strategy for representing information. I will show that a highly efficient code is not specific to a population of neurons with finely tuned response properties: it emerges robustly in a shallow network with random synapses. Here, the geometry of population responses implies that optimality obtains from a tradeoff between two qualitatively different types of error: ‘local’ errors (common to classical neural population codes) and ‘global’ (or ‘catastrophic’) errors. This tradeoff leads to efficient compression of information from a high-dimensional representation to a low-dimensional one. After describing the theoretical framework, I will use it to re-interpret recordings of motor cortex in behaving monkey. Our framework addresses the encoding of (sensory) information; if time allows, I will comment on ongoing work that focuses on decoding from the perspective of efficient coding.
Synthetic and natural images unlock the power of recurrency in primary visual cortex
During perception the visual system integrates current sensory evidence with previously acquired knowledge of the visual world. Presumably this computation relies on internal recurrent interactions. We record populations of neurons from the primary visual cortex of cats and macaque monkeys and find evidence for adaptive internal responses to structured stimulation that change on both slow and fast timescales. In the first experiment, we present abstract images, only briefly, a protocol known to produce strong and persistent recurrent responses in the primary visual cortex. We show that repetitive presentations of a large randomized set of images leads to enhanced stimulus encoding on a timescale of minutes to hours. The enhanced encoding preserves the representational details required for image reconstruction and can be detected in post-exposure spontaneous activity. In a second experiment, we show that the encoding of natural scenes across populations of V1 neurons is improved, over a timescale of hundreds of milliseconds, with the allocation of spatial attention. Given the hierarchical organization of the visual cortex, contextual information from the higher levels of the processing hierarchy, reflecting high-level image regularities, can inform the activity in V1 through feedback. We hypothesize that these fast attentional boosts in stimulus encoding rely on recurrent computations that capitalize on the presence of high-level visual features in natural scenes. We design control images dominated by low-level features and show that, in agreement with our hypothesis, the attentional benefits in stimulus encoding vanish. We conclude that, in the visual system, powerful recurrent processes optimize neuronal responses, already at the earliest stages of cortical processing.
Timescales of neural activity: their inference, control, and relevance
Timescales characterize how fast the observables change in time. In neuroscience, they can be estimated from the measured activity and can be used, for example, as a signature of the memory trace in the network. I will first discuss the inference of the timescales from the neuroscience data comprised of the short trials and introduce a new unbiased method. Then, I will apply the method to the data recorded from a local population of cortical neurons from the visual area V4. I will demonstrate that the ongoing spiking activity unfolds across at least two distinct timescales - fast and slow - and the slow timescale increases when monkeys attend to the location of the receptive field. Which models can give rise to such behavior? Random balanced networks are known for their fast timescales; thus, a change in the neurons or network properties is required to mimic the data. I will propose a set of models that can control effective timescales and demonstrate that only the model with strong recurrent interactions fits the neural data. Finally, I will discuss the timescales' relevance for behavior and cortical computations.
ItsAllAboutMotion: Encoding of speed in the human Middle Temporal cortex
The human middle temporal complex (hMT+) has a crucial biological relevance for the processing and detection of direction and speed of motion in visual stimuli. In both humans and monkeys, it has been extensively investigated in terms of its retinotopic properties and selectivity for direction of moving stimuli; however, only in recent years there has been an increasing interest in how neurons in MT encode the speed of motion. In this talk, I will explore the proposed mechanism of speed encoding questioning whether hMT+ neuronal populations encode the stimulus speed directly, or whether they separate motion into its spatial and temporal components. I will characterize how neuronal populations in hMT+ encode the speed of moving visual stimuli using electrocorticography ECoG and 7T fMRI. I will illustrate that the neuronal populations measured in hMT+ are not directly tuned to stimulus speed, but instead encode speed through separate and independent spatial and temporal frequency tuning. Finally, I will show that this mechanism plays a role in evaluating multisensory responses for visual, tactile and auditory motion stimuli in hMT+.
Hebbian Plasticity Supports Predictive Self-Supervised Learning of Disentangled Representations
Discriminating distinct objects and concepts from sensory stimuli is essential for survival. Our brains accomplish this feat by forming meaningful internal representations in deep sensory networks with plastic synaptic connections. Experience-dependent plasticity presumably exploits temporal contingencies between sensory inputs to build these internal representations. However, the precise mechanisms underlying plasticity remain elusive. We derive a local synaptic plasticity model inspired by self-supervised machine learning techniques that shares a deep conceptual connection to Bienenstock-Cooper-Munro (BCM) theory and is consistent with experimentally observed plasticity rules. We show that our plasticity model yields disentangled object representations in deep neural networks without the need for supervision and implausible negative examples. In response to altered visual experience, our model qualitatively captures neuronal selectivity changes observed in the monkey inferotemporal cortex in-vivo. Our work suggests a plausible learning rule to drive learning in sensory networks while making concrete testable predictions.
Computation in the neuronal systems close to the critical point
It was long hypothesized that natural systems might take advantage of the extended temporal and spatial correlations close to the critical point to improve their computational capabilities. However, on the other side, different distances to criticality were inferred from the recordings of nervous systems. In my talk, I discuss how including additional constraints on the processing time can shift the optimal operating point of the recurrent networks. Moreover, the data from the visual cortex of the monkeys during the attentional task indicate that they flexibly change the closeness to the critical point of the local activity. Overall it suggests that, as we would expect from common sense, the optimal state depends on the task at hand, and the brain adapts to it in a local and fast manner.
Geometry of sequence working memory in macaque prefrontal cortex
How the brain stores a sequence in memory remains largely unknown. We investigated the neural code underlying sequence working memory using two-photon calcium imaging to record thousands of neurons in the prefrontal cortex of macaque monkeys memorizing and then reproducing a sequence of locations after a delay. We discovered a regular geometrical organization: The high-dimensional neural state space during the delay could be decomposed into a sum of low-dimensional subspaces, each storing the spatial location at a given ordinal rank, which could be generalized to novel sequences and explain monkey behavior. The rank subspaces were distributed across large overlapping neural groups, and the integration of ordinal and spatial information occurred at the collective level rather than within single neurons. Thus, a simple representational geometry underlies sequence working memory.
Do Capuchin Monkeys, Chimpanzees and Children form Overhypotheses from Minimal Input? A Hierarchical Bayesian Modelling Approach
Abstract concepts are a powerful tool to store information efficiently and to make wide-ranging predictions in new situations based on sparse data. Whereas looking-time studies point towards an early emergence of this ability in human infancy, other paradigms like the relational match to sample task often show a failure to detect abstract concepts like same and different until the late preschool years. Similarly, non-human animals have difficulties solving those tasks and often succeed only after long training regimes. Given the huge influence of small task modifications, there is an ongoing debate about the conclusiveness of these findings for the development and phylogenetic distribution of abstract reasoning abilities. Here, we applied the concept of “overhypotheses” which is well known in the infant and cognitive modeling literature to study the capabilities of 3 to 5-year-old children, chimpanzees, and capuchin monkeys in a unified and more ecologically valid task design. In a series of studies, participants themselves sampled reward items from multiple containers or witnessed the sampling process. Only when they detected the abstract pattern governing the reward distributions within and across containers, they could optimally guide their behavior and maximize the reward outcome in a novel test situation. We compared each species’ performance to the predictions of a probabilistic hierarchical Bayesian model capable of forming overhypotheses at a first and second level of abstraction and adapted to their species-specific reward preferences.
Parametric control of flexible timing through low-dimensional neural manifolds
Biological brains possess an exceptional ability to infer relevant behavioral responses to a wide range of stimuli from only a few examples. This capacity to generalize beyond the training set has been proven particularly challenging to realize in artificial systems. How neural processes enable this capacity to extrapolate to novel stimuli is a fundamental open question. A prominent but underexplored hypothesis suggests that generalization is facilitated by a low-dimensional organization of collective neural activity, yet evidence for the underlying neural mechanisms remains wanting. Combining network modeling, theory and neural data analysis, we tested this hypothesis in the framework of flexible timing tasks, which rely on the interplay between inputs and recurrent dynamics. We first trained recurrent neural networks on a set of timing tasks while minimizing the dimensionality of neural activity by imposing low-rank constraints on the connectivity, and compared the performance and generalization capabilities with networks trained without any constraint. We then examined the trained networks, characterized the dynamical mechanisms underlying the computations, and verified their predictions in neural recordings. Our key finding is that low-dimensional dynamics strongly increases the ability to extrapolate to inputs outside of the range used in training. Critically, this capacity to generalize relies on controlling the low-dimensional dynamics by a parametric contextual input. We found that this parametric control of extrapolation was based on a mechanism where tonic inputs modulate the dynamics along non-linear manifolds in activity space while preserving their geometry. Comparisons with neural recordings in the dorsomedial frontal cortex of macaque monkeys performing flexible timing tasks confirmed the geometric and dynamical signatures of this mechanism. Altogether, our results tie together a number of previous experimental findings and suggest that the low-dimensional organization of neural dynamics plays a central role in generalizable behaviors.
Towards the optimal protocol for investigation of the mirror neuron system
The study of mirror neurons (MN) has a long way since its discovery on monkeys and later on humans. However, in literature there are inconsistencies on the ways stimuli are presented and on the time of presentation. Which is the best way to present motor movement stimuli? Is it possible to estimate when the mirror neurons effect take place by using Transcranial Magnetic Stimulation at specific time windows? In the current study we test different ways of stimuli presentation (photo and video of hand movements) and brain stimulation (e.g. TMS) delivered on the dominant primary motor cortex (M1) at different time windows. Our aim is to solve this void still present on the field and create a standardized protocol that will generate the strongest mirror neurons response in order to have the way for future studies on the field.
Attention to visual motion: shaping sensation into perception
Evolution has endowed primates, including humans, with a powerful visual system, seemingly providing us with a detailed perception of our surroundings. But in reality the underlying process is one of active filtering, enhancement and reshaping. For visual motion perception, the dorsal pathway in primate visual cortex and in particular area MT/V5 is considered to be of critical importance. Combining physiological and psychophysical approaches we have used the processing and perception of visual motion and area MT/V5 as a model for the interaction of sensory (bottom-up) signals with cognitive (top-down) modulatory influences that characterizes visual perception. Our findings document how this interaction enables visual cortex to actively generate a neural representation of the environment that combines the high-performance sensory periphery with selective modulatory influences for producing an “integrated saliency map’ of the environment.
Dissecting the neural circuits underlying prefrontal regulation of reward and threat responsivity in a primate
Gaining insight into the overlapping neural circuits that regulate positive and negative emotion is an important step towards understanding the heterogeneity in the aetiology of anxiety and depression and developing new treatment targets. Determining the core contributions of the functionally heterogenous prefrontal cortex to these circuits is especially illuminating given its marked dysregulation in affective disorders. This presentation will review a series of studies in a new world monkey, the common marmoset, employing pathway-specific chemogenetics, neuroimaging, neuropharmacology and behavioural and cardiovascular analysis to dissect out prefrontal involvement in the regulation of both positive and negative emotion. Highlights will include the profound shift of sensitivity away from reward and towards threat induced by localised activations within distinct regions of vmPFC, namely areas 25 and 14 as well as the opposing contributions of this region, compared to orbitofrontal and dorsolateral prefrontal cortex, in the overall responsivity to threat. Ongoing follow-up studies are identifying the distinct downstream pathways that mediate some of these effects as well as their differential sensitivity to rapidly acting anti-depressants.
Neural circuits for novel choices and for choice speed and accuracy changes in macaques
While most experimental tasks aim at isolating simple cognitive processes to study their neural bases, naturalistic behaviour is often complex and multidimensional. I will present two studies revealing previously uncharacterised neural circuits for decision-making in macaques. This was possible thanks to innovative experimental tasks eliciting sophisticated behaviour, bridging the human and non-human primate research traditions. Firstly, I will describe a specialised medial frontal circuit for novel choice in macaques. Traditionally, monkeys receive extensive training before neural data can be acquired, while a hallmark of human cognition is the ability to act in novel situations. I will show how this medial frontal circuit can combine the values of multiple attributes for each available novel item on-the-fly to enable efficient novel choices. This integration process is associated with a hexagonal symmetry pattern in the BOLD response, consistent with a grid-like representation of the space of all available options. We prove the causal role played by this circuit by showing that focussed transcranial ultrasound neuromodulation impairs optimal choice based on attribute integration and forces the subjects to default to a simpler heuristic decision strategy. Secondly, I will present an ongoing project addressing the neural mechanisms driving behaviour shifts during an evidence accumulation task that requires subjects to trade speed for accuracy. While perceptual decision-making in general has been thoroughly studied, both cognitively and neurally, the reasons why speed and/or accuracy are adjusted, and the associated neural mechanisms, have received little attention. We describe two orthogonal dimensions in which behaviour can vary (traditional speed-accuracy trade-off and efficiency) and we uncover independent neural circuits concerned with changes in strategy and fluctuations in the engagement level. The former involves the frontopolar cortex, while the latter is associated with the insula and a network of subcortical structures including the habenula.
Response of cortical networks to optogenetic stimulation: Experiment vs. theory
Optogenetics is a powerful tool that allows experimentalists to perturb neural circuits. What can we learn about a network from observing its response to perturbations? I will first describe the results of optogenetic activation of inhibitory neurons in mice cortex, and show that the results are consistent with inhibition stabilization. I will then move to experiments in which excitatory neurons are activated optogenetically, with or without visual inputs, in mice and monkeys. In some conditions, these experiments show a surprising result that the distribution of firing rates is not significantly changed by stimulation, even though firing rates of individual neurons are strongly modified. I will show in which conditions a network model of excitatory and inhibitory neurons can reproduce this feature.
Neural Codes for Natural Behaviors in Flying Bats
This talk will focus on the importance of using natural behaviors in neuroscience research – the “Natural Neuroscience” approach. I will illustrate this point by describing studies of neural codes for spatial behaviors and social behaviors, in flying bats – using wireless neurophysiology methods that we developed – and will highlight new neuronal representations that we discovered in animals navigating through 3D spaces, or in very large-scale environments, or engaged in social interactions. In particular, I will discuss: (1) A multi-scale neural code for very large environments, which we discovered in bats flying in a 200-meter long tunnel. This new type of neural code is fundamentally different from spatial codes reported in small environments – and we show theoretically that it is superior for representing very large spaces. (2) Rapid modulation of position × distance coding in the hippocampus during collision-avoidance behavior between two flying bats. This result provides a dramatic illustration of the extreme dynamism of the neural code. (3) Local-but-not-global order in 3D grid cells – a surprising experimental finding, which can be explained by a simple physics-inspired model, which successfully describes both 3D and 2D grids. These results strongly argue against many of the classical, geometrically-based models of grid cells. (4) I will also briefly describe new results on the social representation of other individuals in the hippocampus, in a highly social multi-animal setting. The lecture will propose that neuroscience experiments – in bats, rodents, monkeys or humans – should be conducted under evermore naturalistic conditions.
Functional ultrasound imaging during behavior
The dream of a systems neuroscientist is to be able to unravel neural mechanisms that give rise to behavior. It is increasingly appreciated that behavior involves the concerted distributed activity of multiple brain regions so the focus on single or few brain areas might hinder our understanding. There have been quite a few technological advancements in this domain. Functional ultrasound imaging (fUSi) is an emerging technique that allows us to measure neural activity from medial frontal regions down to subcortical structures up to a depth of 20 mm. It is a method for imaging transient changes in cerebral blood volume (CBV), which are proportional to neural activity changes. It has excellent spatial resolution (~100 μm X 100 μm X 400 μm); its temporal resolution can go down to 100 milliseconds. In this talk, I will present its use in two model systems: marmoset monkeys and rats. In marmoset monkeys, we used it to delineate a social – vocal network involved in vocal communication while in rats, we used it to gain insights into brain wide networks involved in evidence accumulation based decision making. fUSi has the potential to provide an unprecedented access to brain wide dynamics in freely moving animals performing complex behavioral tasks.
NMC4 Short Talk: Neurocomputational mechanisms of causal inference during multisensory processing in the macaque brain
Natural perception relies inherently on inferring causal structure in the environment. However, the neural mechanisms and functional circuits that are essential for representing and updating the hidden causal structure during multisensory processing are unknown. To address this, monkeys were trained to infer the probability of a potential common source from visual and proprioceptive signals on the basis of their spatial disparity in a virtual reality system. The proprioceptive drift reported by monkeys demonstrated that they combined historical information and current multisensory signals to estimate the hidden common source and subsequently updated both the causal structure and sensory representation. Single-unit recordings in premotor and parietal cortices revealed that neural activity in premotor cortex represents the core computation of causal inference, characterizing the estimation and update of the likelihood of integrating multiple sensory inputs at a trial-by-trial level. In response to signals from premotor cortex, neural activity in parietal cortex also represents the causal structure and further dynamically updates the sensory representation to maintain consistency with the causal inference structure. Thus, our results indicate how premotor cortex integrates historical information and sensory inputs to infer hidden variables and selectively updates sensory representations in parietal cortex to support behavior. This dynamic loop of frontal-parietal interactions in the causal inference framework may provide the neural mechanism to answer long-standing questions regarding how neural circuits represent hidden structures for body-awareness and agency.
NMC4 Short Talk: Transient neuronal suppression for exploitation of new sensory evidence
Decision-making in noisy environments with constant sensory evidence involves integrating sequentially-sampled evidence, a strategy formalized by diffusion models which is supported by decades behavioral and neural findings. By contrast, it is unknown whether this strategy is also used during decision-making when the underlying sensory evidence is expected to change. Here, we trained monkeys to identify the dominant color of a dynamically refreshed checkerboard pattern that doesn't become informative until after a variable delay. Animals' behavioral responses were briefly suppressed after an abrupt change in evidence, and many neurons in the frontal eye field displayed a corresponding dip in activity at this time, similar to the dip frequently observed after stimulus onset. Generalized drift-diffusion models revealed that behavior and neural activity were consistent with a brief suppression of motor output without a change in evidence accumulation itself, in contrast to the popular belief that evidence accumulation is paused or reset. These results suggest that a brief interruption in motor preparation is an important strategy for dealing with changing evidence during perceptual decision making.
- CANCELLED -
A recent formulation of predictive coding theory proposes that a subset of neurons in each cortical area encodes sensory prediction errors, the difference between predictions relayed from higher cortex and the sensory input. Here, we test for evidence of prediction error responses in spiking responses and local field potentials (LFP) recorded in primary visual cortex and area V4 of macaque monkeys, and in complementary electroencephalographic (EEG) scalp recordings in human participants. We presented a fixed sequence of visual stimuli on most trials, and violated the expected ordering on a small subset of trials. Under predictive coding theory, pattern-violating stimuli should trigger robust prediction errors, but we found that spiking, LFP and EEG responses to expected and pattern-violating stimuli were nearly identical. Our results challenge the assertion that a fundamental computational motif in sensory cortex is to signal prediction errors, at least those based on predictions derived from temporal patterns of visual stimulation.
Context-Dependent Relationships between Locus Coeruleus Firing Patterns and Coordinated Neural Activity in the Anterior Cingulate Cortex
Ascending neuromodulatory projections from the locus coeruleus (LC) affect cortical neural networks via the release of norepinephrine (NE). However, the exact nature of these neuromodulatory effects on neural activity patterns in vivo is not well understood. Here we show that in awake monkeys, LC activation is associated with changes in coordinated activity patterns in the anterior cingulate cortex (ACC). These relationships, which are largely independent of changes in firing rates of individual ACC neurons, depend on the type of LC activation: ACC pairwise correlations tend to be reduced when tonic (baseline) LC activity increases but are enhanced when external events drive phasic LC responses. Both relationships covary with pupil changes that reflect LC activation and arousal. These results suggest that modulations of information processing that reflect changes in coordinated activity patterns in cortical networks can result partly from ongoing, context-dependent, arousal-related changes in activation of the LC-NE system.
Rule learning representation in the fronto-parietal network
We must constantly adapt the rules we use to guide our attention. To understand how the brain learns these rules, we designed a novel task that required monkeys to learn which color is the most rewarded at a given time (the current rule). However, just as in real life, the monkey was never explicitly told the rule. Instead, they had to learn it through trial and error by choosing a color, receiving feedback (amount of reward), and then updating their internal rule. After the monkeys reached a behavioral criterion, the rule changed. This change was not cued but could be inferred based on reward feedback. Behavioral modeling found monkeys used rewards to learn the rules. After the rule changed, animals adopted one of two strategies. If the change was small, reflected in a small reward prediction error, the animals continuously updated their rule. However, for large changes, monkeys ‘reset’ their belief about the rule and re-learned the rule from scratch. To understand the neural correlates of learning new rules, we recorded neurons simultaneously from the prefrontal and parietal cortex. We found that the strength of the rule representation increased with the certainty about the current rule, and that the certainty about the rule was represented both implicitly and explicitly in the population.
Metacognition for past and future decision making in primates
As Socrates said that "I know that I know nothing," our mind's function to be aware of our ignorance is essential for abstract and conceptual reasoning. However, the biological mechanism to enable such a hierarchical thought, or meta-cognition, remained unknown. In the first part of the talk, I will demonstrate our studies on the neural mechanism for metacognition on memory in macaque monkeys. In reality, awareness of ignorance is essential not only for the retrospection of the past but also for the exploration of novel unfamiliar environments for the future. However, this proactive feature of metacognition has been understated in neuroscience. In the second part of the talk, I will demonstrate our studies on the neural mechanism for prospective metacognitive matching among uncertain options prior to perceptual decision making in humans and monkeys. These studies converge to suggest that higher-order processes to self-evaluate mental state either retrospectively or prospectively are implemented in the primate neural networks.
Encoding local stimulus attributes and higher visual functions in V1 of behaving monkeys
In this lecture, I will present our recent progress on three aspects of population responses in the primary visual cortex: encoding local stimulus attributes, electrical microstimulation and higher visual function. In the first part I will focus on population encoding and reconstruction of contour shapes in V1 and the comparison between monkey and mouse visual responses. In the second part of the talk I will present the effects of microstimulation on neural population in V1 and the relation to evoked saccades. In the final part of the talk I will discuss top-down influences in V1 and their relation to higher visual functions.
Encoding local stimulus attributes and higher visual functions in V1 of behaving monkeys
Deciding to stop deciding: A cortical-subcortical circuit for forming and terminating a decision
The neurobiology of decision-making is informed by neurons capable of representing information over time scales of seconds. Such neurons were initially characterized in studies of spatial working memory, motor planning (e.g., Richard Andersen lab) and spatial attention. For decision-making, such neurons emit graded spike rates, that represent the accumulated evidence for or against a choice. They establish the conduit between the formation of the decision and its completion, usually in the form of a commitment to an action, even if provisional. Indeed, many decisions appear to arise through an accumulation of noisy samples of evidence to a terminating threshold, or bound. Previous studies show that single neurons in the lateral intraparietal area (LIP) represent the accumulation of evidence when monkeys make decisions about the direction of random dot motion (RDM) and express their decision with a saccade to the neuron’s preferred target. The mechanism of termination (the bound) is elusive. LIP is interconnected with other brain regions that also display decision-related activity. Whether these areas play roles in the decision process that are similar to or fundamentally different from that of LIP is unclear. I will present new unpublished experiments that begin to resolve these issues by recording from populations of neurons simultaneously in LIP and one of its primary targets, the superior colliculus (SC), while monkeys make difficult perceptual decisions.
A dynamical model of the visual cortex
In the past several years, I have been involved in building a biologically realistic model of the monkey visual cortex. Work on one of the input layers (4Ca) of the primary visual cortex (V1) is now nearly complete, and I would like to share some of what I have learned with the community. After a brief overview of the model and its capabilities, I would like to focus on three sets of results that represent three different aspects of the modeling. They are: (i) emergent E-I dynamics in local circuits; (ii) how visual cortical neurons acquire their ability to detect edges and directions of motion, and (iii) a view across the cortical surface: nonequilibrium steady states (in analogy with statistical mechanics) and beyond.
Neural mechanisms of active vision in the marmoset monkey
Human vision relies on rapid eye movements (saccades) 2-3 times every second to bring peripheral targets to central foveal vision for high resolution inspection. This rapid sampling of the world defines the perception-action cycle of natural vision and profoundly impacts our perception. Marmosets have similar visual processing and eye movements as humans, including a fovea that supports high-acuity central vision. Here, I present a novel approach developed in my laboratory for investigating the neural mechanisms of visual processing using naturalistic free viewing and simple target foraging paradigms. First, we establish that it is possible to map receptive fields in the marmoset with high precision in visual areas V1 and MT without constraints on fixation of the eyes. Instead, we use an off-line correction for eye position during foraging combined with high resolution eye tracking. This approach allows us to simultaneously map receptive fields, even at the precision of foveal V1 neurons, while also assessing the impact of eye movements on the visual information encoded. We find that the visual information encoded by neurons varies dramatically across the saccade to fixation cycle, with most information localized to brief post-saccadic transients. In a second study we examined if target selection prior to saccades can predictively influence how foveal visual information is subsequently processed in post-saccadic transients. Because every saccade brings a target to the fovea for detailed inspection, we hypothesized that predictive mechanisms might prime foveal populations to process the target. Using neural decoding from laminar arrays placed in foveal regions of area MT, we find that the direction of motion for a fixated target can be predictively read out from foveal activity even before its post-saccadic arrival. These findings highlight the dynamic and predictive nature of visual processing during eye movements and the utility of the marmoset as a model of active vision. Funding sources: NIH EY030998 to JM, Life Sciences Fellowship to JY
Neural dynamics underlying temporal inference
Animals possess the ability to effortlessly and precisely time their actions even though information received from the world is often ambiguous and is inadvertently transformed as it passes through the nervous system. With such uncertainty pervading through our nervous systems, we could expect that much of human and animal behavior relies on inference that incorporates an important additional source of information, prior knowledge of the environment. These concepts have long been studied under the framework of Bayesian inference with substantial corroboration over the last decade that human time perception is consistent with such models. We, however, know little about the neural mechanisms that enable Bayesian signatures to emerge in temporal perception. I will present our work on three facets of this problem, how Bayesian estimates are encoded in neural populations, how these estimates are used to generate time intervals, and how prior knowledge for these tasks is acquired and optimized by neural circuits. We trained monkeys to perform an interval reproduction task and found their behavior to be consistent with Bayesian inference. Using insights from electrophysiology and in silico models, we propose a mechanism by which cortical populations encode Bayesian estimates and utilize them to generate time intervals. Thereafter, I will present a circuit model for how temporal priors can be acquired by cerebellar machinery leading to estimates consistent with Bayesian theory. Based on electrophysiology and anatomy experiments in rodents, I will provide some support for this model. Overall, these findings attempt to bridge insights from normative frameworks of Bayesian inference with potential neural implementations for the acquisition, estimation, and production of timing behaviors.
The Dark Side of Vision: Resolving the Neural Code
All sensory information – like what we see, hear and smell – gets encoded in spike trains by sensory neurons and gets sent to the brain. Due to the complexity of neural circuits and the difficulty of quantifying complex animal behavior, it has been exceedingly hard to resolve how the brain decodes these spike trains to drive behavior. We now measure quantal signals originating from sparse photons through the most sensitive neural circuits of the mammalian retina and correlate the retinal output spike trains with precisely quantified behavioral decisions. We utilize a combination of electrophysiological measurements on the most sensitive ON and OFF retinal ganglion cell types and a novel deep-learning based tracking technology of the head and body positions of freely-moving mice. We show that visually-guided behavior relies on information from the retinal ON pathway for the dimmest light increments and on information from the retinal OFF pathway for the dimmest light decrements (“quantal shadows”). Our results show that the distribution of labor between ON and OFF pathways starts already at starlight supporting distinct pathway-specific visual computations to drive visually-guided behavior. These results have several fundamental consequences for understanding how the brain integrates information across parallel information streams as well as for understanding the limits of sensory signal processing. In my talk, I will discuss some of the most eminent consequences including the extension of this “Quantum Behavior” paradigm from mouse vision to monkey and human visual systems.
Exploring feedforward and feedback communication between visual cortical areas with DLAG
Technological advances have increased the availability of recordings from large populations of neurons across multiple brain areas. Coupling these recordings with dimensionality reduction techniques, recent work has led to new proposals for how populations of neurons can send and receive signals selectively and flexibly. Advancement of these proposals depends, however, on untangling the bidirectional, parallel communication between neuronal populations. Because our current data analytic tools struggle to achieve this task, we have recently validated and presented a novel dimensionality reduction framework: DLAG, or Delayed Latents Across Groups. DLAG decomposes the time-varying activity in each area into within- and across-area latent variables. Across-area variables can be decomposed further into feedforward and feedback components using automatically estimated time delays. In this talk, I will review the DLAG framework. Then I will discuss new insights into the moment-by-moment nature of feedforward and feedback communication between visual cortical areas V1 and V2 of macaque monkeys. Overall, this work lays the foundation for dissecting the dynamic flow of signals across populations of neurons, and how it might change across brain areas and behavioral contexts.
Hebbian learning, its inference, and brain oscillation
Despite the recent success of deep learning in artificial intelligence, the lack of biological plausibility and labeled data in natural learning still poses a challenge in understanding biological learning. At the other extreme lies Hebbian learning, the simplest local and unsupervised one, yet considered to be computationally less efficient. In this talk, I would introduce a novel method to infer the form of Hebbian learning from in vivo data. Applying the method to the data obtained from the monkey inferior temporal cortex for the recognition task indicates how Hebbian learning changes the dynamic properties of the circuits and may promote brain oscillation. Notably, recent electrophysiological data observed in rodent V1 showed that the effect of visual experience on direction selectivity was similar to that observed in monkey data and provided strong validation of asymmetric changes of feedforward and recurrent synaptic strengths inferred from monkey data. This may suggest a general learning principle underlying the same computation, such as familiarity detection across different features represented in different brain regions.
LAB COGNITION GOING WILD: Field experiments on vervet monkeys'
I will present field experiments on vervet monkeys testing physical and social cognition, with a focus on social learning. The understanding of the emergence of cultural behaviours in animals has advanced significantly with contributions from complementary approaches: natural observations and controlled field experiments. Experiments with wild vervet monkeys highlight that monkeys are selective about ‘who’ they learn from socially and that they will abandon personal foraging preferences in favour of group norms new to them. The reported findings highlight the feasibility to study cognition under field conditions.
Untangling brain wide current flow using neural network models
Rajanlab designs neural network models constrained by experimental data, and reverse engineers them to figure out how brain circuits function in health and disease. Recently, we have been developing a powerful new theory-based framework for “in-vivo tract tracing” from multi-regional neural activity collected experimentally. We call this framework CURrent-Based Decomposition (CURBD). CURBD employs recurrent neural networks (RNNs) directly constrained, from the outset, by time series measurements acquired experimentally, such as Ca2+ imaging or electrophysiological data. Once trained, these data-constrained RNNs let us infer matrices quantifying the interactions between all pairs of modeled units. Such model-derived “directed interaction matrices” can then be used to separately compute excitatory and inhibitory input currents that drive a given neuron from all other neurons. Therefore different current sources can be de-mixed – either within the same region or from other regions, potentially brain-wide – which collectively give rise to the population dynamics observed experimentally. Source de-mixed currents obtained through CURBD allow an unprecedented view into multi-region mechanisms inaccessible from measurements alone. We have applied this method successfully to several types of neural data from our experimental collaborators, e.g., zebrafish (Deisseroth lab, Stanford), mice (Harvey lab, Harvard), monkeys (Rudebeck lab, Sinai), and humans (Rutishauser lab, Cedars Sinai), where we have discovered both directed interactions brain wide and inter-area currents during different types of behaviors. With this powerful framework based on data-constrained multi-region RNNs and CURrent Based Decomposition (CURBD), we ask if there are conserved multi-region mechanisms across different species, as well as identify key divergences.
Inferring brain-wide current flow using data-constrained neural network models
Rajanlab designs neural network models constrained by experimental data, and reverse engineers them to figure out how brain circuits function in health and disease. Recently, we have been developing a powerful new theory-based framework for “in-vivo tract tracing” from multi-regional neural activity collected experimentally. We call this framework CURrent-Based Decomposition (CURBD). CURBD employs recurrent neural networks (RNNs) directly constrained, from the outset, by time series measurements acquired experimentally, such as Ca2+ imaging or electrophysiological data. Once trained, these data-constrained RNNs let us infer matrices quantifying the interactions between all pairs of modeled units. Such model-derived “directed interaction matrices” can then be used to separately compute excitatory and inhibitory input currents that drive a given neuron from all other neurons. Therefore different current sources can be de-mixed – either within the same region or from other regions, potentially brain-wide – which collectively give rise to the population dynamics observed experimentally. Source de-mixed currents obtained through CURBD allow an unprecedented view into multi-region mechanisms inaccessible from measurements alone. We have applied this method successfully to several types of neural data from our experimental collaborators, e.g., zebrafish (Deisseroth lab, Stanford), mice (Harvey lab, Harvard), monkeys (Rudebeck lab, Sinai), and humans (Rutishauser lab, Cedars Sinai), where we have discovered both directed interactions brain wide and inter-area currents during different types of behaviors. With this framework based on data-constrained multi-region RNNs and CURrent Based Decomposition (CURBD), we can ask if there are conserved multi-region mechanisms across different species, as well as identify key divergences.
Using marmosets for the study of the visual cortex: unique opportunities, and some pitfalls
Marmosets (Callithrix jacchus) are small South American monkeys which are being increasingly becoming adopted as animal models in neuroscience. Knowledge about the marmoset visual system has developed rapidly over the last decade. But what are the comparative advantages, and disadvantages involved in adopting this emerging model, as opposed to the more traditionally used macaque monkey? In this talk I will present case studies where the simpler brain morphology and short developmental cycle of the marmoset have been key factors in facilitating discoveries about the anatomy and physiology of the visual system. Although no single species provides the “ideal” animal model for invasive studies of the neural bases of visual processing, I argue that the development of robust methodologies for the study of the marmoset brain provides exciting opportunities to address long-standing problems in neuroscience.
Monkey Talk – what studies about nonhuman primate vocal communication reveal about the evolution of speech
The evolution of speech is considered to be one of the hardest problems in science. Studies of the communicative abilities of our closest living relatives, the nonhuman primates, aim to contribute to a better understanding of the emergence of this uniquely human capability. Following a brief introduction over the key building blocks that make up the human speech faculty, I will focus on the question of meaning in nonhuman primate vocalizations. While nonhuman primate calls may be highly context specific, thus giving rise to the notion of ‘referentiality’, comparisons across closely related species suggest that this specificity is evolved rather than learned. Yet, as in humans, the structure of calls varies with arousal and affective state, and there is some evidence for effects of sensory-motor integration in vocal production. Thus, the vocal production of nonhuman primates bears little resemblance to the symbolic and combinatorial features of human speech, while basic production mechanisms are shared. Listeners, in contrast, are able learning the meaning of new sounds. A recent study using artificial predator shows that this learning may be extremely rapid. Furthermore, listeners are able to integrate information from multiple sources to make adaptive decisions, which renders the vocal communication system as a whole relatively flexible and powerful. In conclusion, constraints at the side of vocal production, including limits in social cognition and motivation to share experiences, rather than constraints at the side of the recipient explain the differences in communicative abilities between humans and other animals.
The geometry of abstraction in hippocampus and pre-frontal cortex
The curse of dimensionality plagues models of reinforcement learning and decision-making. The process of abstraction solves this by constructing abstract variables describing features shared by different specific instances, reducing dimensionality and enabling generalization in novel situations. Here we characterized neural representations in monkeys performing a task where a hidden variable described the temporal statistics of stimulus-response-outcome mappings. Abstraction was defined operationally using the generalization performance of neural decoders across task conditions not used for training. This type of generalization requires a particular geometric format of neural representations. Neural ensembles in dorsolateral pre-frontal cortex, anterior cingulate cortex and hippocampus, and in simulated neural networks, simultaneously represented multiple hidden and explicit variables in a format reflecting abstraction. Task events engaging cognitive operations modulated this format. These findings elucidate how the brain and artificial systems represent abstract variables, variables critical for generalization that in turn confers cognitive flexibility.
Neural Population Perspectives on Learning and Motor Control
Learning is a population phenomenon. Since it is the organized activity of populations of neurons that cause movement, learning a new skill must involve reshaping those population activity patterns. Seeing how the brain does this has been elusive, but a brain-computer interface approach can yield new insight. We presented monkeys with novel BCI mappings that we knew would be difficult for them to learn how to control. Over several days, we observed the emergence of new patterns of neural activity that endowed the animals with the ability to perform better at the BCI task. We speculate that there also exists a direct relationship between new patterns of neural activity and new abilities during natural movements, but it is much harder to see in that setting.
About time: the temporal control of cell fate in the developing vertebrate nervous system
The Desire to Know: Non-Instrumental Information Seeking in Mice
Animals are motivated to acquire knowledge. A particularly striking example is information seeking behavior: animals often seek out sensory cues that will inform them about the properties of uncertain future rewards, even when there is no way for them to use this information to influence the reward outcome, and even when this information comes at a considerable cost. Evidence from monkey electrophysiology and human fMRI studies suggests that orbitofrontal cortex and midbrain dopamine neurons represent the subjective value of knowledge during information seeking behavior. However, it remains unclear how the brain assigns value to information and how it integrates this with other incentives to drive behavior. We have therefore developed a task to test if information preferences are present in mice and study how informational value is imparted on stimuli. Mice are trained to enter a center port and receive an initial odor that instructs them to either go to an informative side port, go to an uninformative side port, or choose freely between them. The chosen side port then yields a second odor cue followed by a delayed probabilistic water reward. The informative port’s odor cue indicates whether the upcoming reward will be big or small. The uninformative port’s odor cue is uncorrelated with the trial outcome. Crucially, the two ports only differ in their odor cues, not in their water value since both offer identical probabilities of big and small rewards. We find that mice prefer the informative port. This preference is evident as a higher percentage choice of the informative port when given a free choice (67% +/- 1.7%, n = 14, p < 0.03), as well as by faster reaction times when instructed to go to the informative port (544ms +/- 21ms vs 795ms +/- 21ms, n = 14, p < 0.001). The preference for information is robust to within-animal reversals of informative and uninformative port locations, and, moreover, mice are willing to pay for information by choosing the informative port even if its reward amount is reduced to be substantially lower than the uninformative port. These behavioral observations suggest that odor stimuli are imparted with informational value as mice learn the information seeking task. We are currently imaging neural activity in orbitofrontal cortex with microendoscopes to identify changes in neural activity that may reflect value associated with the acquisition of knowledge.
Neural and computational principles of the processing of dynamic faces and bodies
Body motion is a fundamental signal of social communication. This includes facial as well as full-body movements. Combining advanced methods from computer animation with motion capture in humans and monkeys, we synthesized highly-realistic monkey avatar models. Our face avatar is perceived by monkeys as almost equivalent to a real animal, and does not induce an ‘uncanny valley effect’, unlike all other previously used avatar models in studies with monkeys. Applying machine-learning methods for the control of motion style, we were able to investigate how species-specific shape and dynamic cues influence the perception of human and monkey facial expressions. Human observers showed very fast learning of monkey expressions, and a perceptual encoding of expression dynamics that was largely independent of facial shape. This result is in line with the fact that facial shape evolved faster than the neuromuscular control in primate phylogenesis. At the same time, it challenges popular neural network models of the recognition of dynamic faces that assume a joint encoding of facial shape and dynamics. We propose an alternative physiologically-inspired neural model that realizes such an orthogonal encoding of facial shape and expression from video sequences. As second example, we investigated the perception of social interactions from abstract stimuli, similar to the ones by Heider & Simmel (1944), and also from more realistic stimuli. We developed and validated a new generative model for the synthesis of such social interaction, which is based on a modification of human navigation model. We demonstrate that the recognition of such stimuli, including the perception of agency, can be accounted for by a relatively elementary physiologically-inspired hierarchical neural recognition model, that does not require the assumption of sophisticated inference mechanisms, as postulated by some cognitive theories of social recognition. Summarizing, this suggests that essential phenomena in social cognition might be accounted for by a small set of simple neural principles that can be easily implemented by cortical circuits. The developed technologies for stimulus control form the basis of electrophysiological studies that can verify specific neural circuits, as the ones proposed by our theoretical models.
Detecting Covert Cognitive States from Neural Population Recordings in Prefrontal Cortex
The neural mechanisms underlying decision-making are typically examined by statistical analysis of large numbers of trials from sequentially recorded single neurons. Averaging across sequential recordings, however, obscures important aspects of decision-making such as variations in confidence and 'changes of mind' (CoM) that occur at variable times on different trials. I will show that the covert decision variables (DV) can be tracked dynamically on single behavioral trials via simultaneous recording of large neural populations in prefrontal cortex. Vacillations of the neural DV, in turn, identify candidate CoM in monkeys, which closely match the known properties of human CoM. Thus simultaneous population recordings can provide insight into transient, internal cognitive states that are otherwise undetectable.
The geometry of abstraction in artificial and biological neural networks
The curse of dimensionality plagues models of reinforcement learning and decision-making. The process of abstraction solves this by constructing abstract variables describing features shared by different specific instances, reducing dimensionality and enabling generalization in novel situations. We characterized neural representations in monkeys performing a task where a hidden variable described the temporal statistics of stimulus-response-outcome mappings. Abstraction was defined operationally using the generalization performance of neural decoders across task conditions not used for training. This type of generalization requires a particular geometric format of neural representations. Neural ensembles in dorsolateral pre-frontal cortex, anterior cingulate cortex and hippocampus, and in simulated neural networks, simultaneously represented multiple hidden and explicit variables in a format reflecting abstraction. Task events engaging cognitive operations modulated this format. These findings elucidate how the brain and artificial systems represent abstract variables, variables critical for generalization that in turn confers cognitive flexibility.
Cortical-like dynamics in recurrent circuits optimized for sampling-based probabilistic inference
Sensory cortices display a suite of ubiquitous dynamical features, such as ongoing noise variability, transient overshoots, and oscillations, that have so far escaped a common, principled theoretical account. We developed a unifying model for these phenomena by training a recurrent excitatory-inhibitory neural circuit model of a visual cortical hypercolumn to perform sampling-based probabilistic inference. The optimized network displayed several key biological properties, including divisive normalization, as well as stimulus-modulated noise variability, inhibition-dominated transients at stimulus onset, and strong gamma oscillations. These dynamical features had distinct functional roles in speeding up inferences and made predictions that we confirmed in novel analyses of awake monkey recordings. Our results suggest that the basic motifs of cortical dynamics emerge as a consequence of the efficient implementation of the same computational function — fast sampling-based inference — and predict further properties of these motifs that can be tested in future experiments
Computational Models of Large-Scale Brain Networks - Dynamics & Function
Theoretical and computational models of neural systems have been traditionally focused on small neural circuits, given the lack of reliable data on large-scale brain structures. The situation has started to change in recent years, with novel recording technologies and large organized efforts to describe the brain at a larger scale. In this talk, Professor Mejias from the University of Amsterdam will review his recent work on developing anatomically constrained computational models of large-scale cortical networks of monkeys, and how this approach can help to answer important questions in large-scale neuroscience. He will focus on three main aspects: (i) the emergence of functional interactions in different frequency regimes, (ii) the role of balance for efficient large-scale communication, and (iii) new paradigms of brain function, such as working memory, in large-scale networks.
Clear evidence in favor of adaptation and against temporally specific predictive suppression in monkey primary auditory cortex
COSYNE 2022
Identifying the control strategies of monkeys and humans in a virtual balancing task
COSYNE 2022
Identifying the control strategies of monkeys and humans in a virtual balancing task
COSYNE 2022
Integrating information and reward into subjective value: humans, monkeys, and the lateral habenula
COSYNE 2022
Integrating information and reward into subjective value: humans, monkeys, and the lateral habenula
COSYNE 2022
Monkeys exhibit combinatorial reasoning during economic deliberation.
COSYNE 2022
Monkeys exhibit combinatorial reasoning during economic deliberation.
COSYNE 2022
Perceptual and neural representations of naturalistic texture information in developing monkeys
COSYNE 2022
Perceptual and neural representations of naturalistic texture information in developing monkeys
COSYNE 2022
Rationalizing How Monkeys Catch Fireflies
COSYNE 2022
Rationalizing How Monkeys Catch Fireflies
COSYNE 2022
Towards understanding the microcircuit in monkey primary visual cortex in-vivo
COSYNE 2023
An encoding model to study the sensorimotor cortex of freely-behaving monkeys
COSYNE 2025
Orthogonal line attractors in the monkey frontoparietal cortex and RNNs support hierarchical decisions
COSYNE 2025
Persistent decision-making in mice, monkeys, and humans
COSYNE 2025
Complex sublamination of cortical marginal zone in human and monkey at midgestation
FENS Forum 2024
Direct projections from the contralateral amygdala to extrastriate areas in the marmoset monkey
FENS Forum 2024
Differential metabolism of serine enantiomers in the striatum of MPTP-lesioned monkeys and mice correlates with the severity of dopaminergic midbrain degeneration
FENS Forum 2024
Dorsolateral prefrontal cortex neural modulation during heuristic behavior in a two-level decision-making task in macaque monkeys
FENS Forum 2024
Dynamic fading memory and expectancy effects in the monkey primary visual cortex
FENS Forum 2024
ECoG-based functional mapping of the motor cortex in rhesus monkeys
FENS Forum 2024
The interplay between low and high local field potential oscillations in the premotor cortex of monkey reflects the decision processed during a transitive inference task
FENS Forum 2024
Machine learning approach applied to exploration of neuronal sensorimotor processing during a visuomotor rule-based task performed by a monkey
FENS Forum 2024
The neurophysiological basis of learning to learn in macaque monkeys
FENS Forum 2024
Origins of GABAergic neurons migrating through the human and monkey marginal zone during midgestation
FENS Forum 2024
Planning horizon in motor cortex during skill learning in macaque monkeys
FENS Forum 2024
Postnatal structural development of the monkey perirhinal and parahippocampal cortices
FENS Forum 2024
Vocal-cardiorespiratory coordination during the learning process to volitionally vocalize in marmoset monkeys
FENS Forum 2024