← Back

Motor Activity

Topic spotlight
TopicWorld Wide

motor activity

Discover seminars, jobs, and research tagged with motor activity across World Wide.
18 curated items11 Seminars7 ePosters
Updated over 3 years ago
18 items · motor activity
18 results
SeminarNeuroscience

Multimodal tracking of motor activity, sleep and mood

Kathleen Ries Merikangas
National University of Singapore (Singapore)
Jun 8, 2022

This talk will (1) describe patterns and correlates of objectively assessed motor activity (2) present findings on the inter-relationships among motor activity, sleep and circadian rhythms and mood disorders; (3) describe potential of cross species studies of motor activity and related systems to inform human chronobiology research

SeminarNeuroscience

State-dependent cortical circuits

Jess Cardin
Yale School of Medicine
May 13, 2021

Spontaneous and sensory-evoked cortical activity is highly state-dependent, promoting the functional flexibility of cortical circuits underlying perception and cognition. Using neural recordings in combination with behavioral state monitoring, we find that arousal and motor activity have complementary roles in regulating local cortical operations, providing dynamic control of sensory encoding. These changes in encoding are linked to altered performance on perceptual tasks. Neuromodulators, such as acetylcholine, may regulate this state-dependent flexibility of cortical network function. We therefore recently developed an approach for dual mesoscopic imaging of acetylcholine release and neural activity across the entire cortical mantle in behaving mice. We find spatiotemporally heterogeneous patterns of cholinergic signaling across the cortex. Transitions between distinct behavioral states reorganize the structure of large-scale cortico-cortical networks and differentially regulate the relationship between cholinergic signals and neural activity. Together, our findings suggest dynamic state-dependent regulation of cortical network operations at the levels of both local and large-scale circuits. Zoom Meeting ID: 964 8138 3003 Contact host if you cannot connect.

SeminarNeuroscience

State-dependent cortical circuits

Jessica Cardin
Yale School of Medicine
Jan 17, 2021

Spontaneous and sensory-evoked cortical activity is highly state-dependent, promoting the functional flexibility of cortical circuits underlying perception and cognition. Using neural recordings in combination with behavioral state monitoring, we find that arousal and motor activity have complementary roles in regulating local cortical operations, providing dynamic control of sensory encoding. These changes in encoding are linked to altered performance on perceptual tasks. Neuromodulators, such as acetylcholine, may regulate this state-dependent flexibility of cortical network function. We therefore recently developed an approach for dual mesoscopic imaging of acetylcholine release and neural activity across the entire cortical mantle in behaving mice. We find spatiotemporally heterogeneous patterns of cholinergic signaling across the cortex. Transitions between distinct behavioral states reorganize the structure of large-scale cortico-cortical networks and differentially regulate the relationship between cholinergic signals and neural activity. Together, our findings suggest dynamic state-dependent regulation of cortical network operations at the levels of both local and large-scale circuits.

SeminarNeuroscienceRecording

Exploring fine detail: The interplay of attention, oculomotor behavior and visual perception in the fovea

Martina Poletti
University of Rochester
Dec 8, 2020

Outside the foveola, visual acuity and other visual functions gradually deteriorate with increasing eccentricity. Humans compensate for these limitations by relying on a tight link between perception and action; rapid gaze shifts (saccades) occur 2-3 times every second, separating brief “fixation” intervals in which visual information is acquired and processed. During fixation, however, the eye is not immobile. Small eye movements incessantly shift the image on the retina even when the attended stimulus is already foveated, suggesting a much deeper coupling between visual functions and oculomotor activity. Thanks to a combination of techniques allowing for high-resolution recordings of eye position, retinal stabilization, and accurate gaze localization, we examined how attention and eye movements are controlled at this scale. We have shown that during fixation, visual exploration of fine spatial detail unfolds following visuomotor strategies similar to those occurring at a larger scale. This behavior compensates for non-homogenous visual capabilities within the foveola and is finely controlled by attention, which facilitates processing at selected foveal locations. Ultimately, the limits of high acuity vision are greatly influenced by the spatiotemporal modulations introduced by fixational eye movements. These findings reveal that, contrary to common intuition, placing a stimulus within the foveola is necessary but not sufficient for high visual acuity; fine spatial vision is the outcome of an orchestrated synergy of motor, cognitive, and attentional factors.

SeminarNeuroscienceRecording

State-dependent regulation of cortical circuits

Jessica Cardin
Yale School of Medicine
Nov 10, 2020

Spontaneous and sensory-evoked cortical activity is highly state-dependent, promoting the functional flexibility of cortical circuits underlying perception and cognition. Using neural recordings in combination with behavioral state monitoring, we find that arousal and motor activity have complementary roles in regulating local cortical operations, providing dynamic control of sensory encoding. These changes in encoding are linked to altered performance on perceptual tasks. Neuromodulators, such as acetylcholine, may regulate this state-dependent flexibility of cortical network function. We therefore recently developed an approach for dual mesoscopic imaging of acetylcholine release and neural activity across the entire cortical mantle in behaving mice. We find spatiotemporally heterogeneous patterns of cholinergic signaling across the cortex. Transitions between distinct behavioral states reorganize the structure of large-scale cortico-cortical networks and differentially regulate the relationship between cholinergic signals and neural activity. Together, our findings suggest dynamic state-dependent regulation of cortical network operations at the levels of both local and large-scale circuits.

SeminarNeuroscienceRecording

The active modulation of sound and vibration perception

Natasha Mhatre
University of Western Ontario
Jun 16, 2020

The dominant view of perception right now is that information travels from the environment to the sensory system, then to the nervous systems which processes it to generate a percept and behaviour. Ongoing behaviour is thought to occur largely through simple iterations of this process. However, this linear view, where information flows only in one direction and the properties of the environment and the sensory system remain static and unaffected by behaviour, is slowly fading. Many of us are beginning to appreciate that perception is largely active, i.e. that information flows back and forth between the three systems modulating their respective properties. In other words, in the real world, the environment and sensorimotor loop is pretty much always closed. I study the loop; in particular I study how the reverse arm of the loop affects sound and vibration perception. I will present two examples of motor modulation of perception at two very different temporal and spatial scales. First, in crickets, I will present data on how high-speed molecular motor activity enhances hearing via the well-studied phenomenon of active amplification. Second, in spiders I will present data on how body posture, a slow macroscopic feature, which can barely be called ‘active’, can nonetheless modulate vibration perception. I hope these results will motivate a conversation about whether ‘active’ perception is an optional feature observed in some sensory systems, or something that is ultimately necessitated by both evolution and physics.

ePoster

Sensory predictions are embedded in cortical motor activity

Jonathan A Michaels, Mehrdad Kashefi, Jack Zheng, Olivier Codol, Jeff Weiler, Andrew Pruszynski

COSYNE 2023

ePoster

Uncertainty differentially shapes premotor and primary motor activity during movement planning

Bence Bagi, Brian M. Dekleva, Lee E. Miller, Juan A. Gallego

COSYNE 2023

ePoster

Chronic unpredictable sleep disruption induces changes in locomotor activity, metabolism, and inflammation in Wistar rats

Heather Macpherson, Roger Varela, Sebastian McCullough, Tristan Houghton, Isha Chawla, Ning Wang, Xiaoying Cui, Susannah Tye

FENS Forum 2024

ePoster

New data in an animal model for schizophrenia: Ketamine-induced locomotor activity and repetitive behavioural responses are higher after neonatal functional blockade of the prefrontal cortex

Alain Louilot, Séverine Heintz

FENS Forum 2024

ePoster

Phenotyping of aging Sprague-Dawley rats: Exploring the relationship between social behavior and locomotor activity

Jovana Aranđelović, Jana Ivanović, Kristina Mirković, Anja Santrač, Miroslav Savić

FENS Forum 2024

ePoster

Reproduction, gene expression, and locomotor activity in Syrian hamsters: Impact of different Hypericum perforatum L. doses

Bulent Gunduz, Berrak Damla Yağan, Betul Onder, Tanay Uzgan

FENS Forum 2024

ePoster

Topographically organized sensory-motor activity of dorsal raphe and its forebrain innervations modulate resting-state and sensory-evoked forebrain activity and animal behavior

Aytac Kadir Mutlu, Bram Serneels, Christoph Wiest, Anh-Tuan Trinh, Ricarda Bardenhewer, Oda Bjørnevik Håheim, Inger Kristine Fjeldskaar Aukrust, Fabrizio Palumbo, Emre Yaksi

FENS Forum 2024