← Back

Motor Functions

Topic spotlight
TopicWorld Wide

motor functions

Discover seminars, jobs, and research tagged with motor functions across World Wide.
7 curated items6 Seminars1 ePoster
Updated almost 2 years ago
7 items · motor functions
7 results
SeminarNeuroscience

Sensory Consequences of Visual Actions

Martin Rolfs
Humboldt-Universität zu Berlin
Dec 7, 2023

We use rapid eye, head, and body movements to extract information from a new part of the visual scene upon each new gaze fixation. But the consequences of such visual actions go beyond their intended sensory outcomes. On the one hand, intrinsic consequences accompany movement preparation as covert internal processes (e.g., predictive changes in the deployment of visual attention). On the other hand, visual actions have incidental consequences, side effects of moving the sensory surface to its intended goal (e.g., global motion of the retinal image during saccades). In this talk, I will present studies in which we investigated intrinsic and incidental sensory consequences of visual actions and their sensorimotor functions. Our results provide insights into continuously interacting top-down and bottom-up sensory processes, and they reify the necessity to study perception in connection to motor behavior that shapes its fundamental processes.

SeminarNeuroscience

Striatal circuits underlying sensorimotor functions

Gilad Silberberg
Karolinska Institute, Sweden
Sep 12, 2021
SeminarNeuroscience

Workshop: Spatial Brain Dynamics

Kenneth Harris, György Buzsáki, Terrence Sejnowski
May 12, 2021

Traditionally, the term dynamics means changes in a system evolving over time. However, in the brain action potentials propagate along axons to induce postsynaptic currents with different delays at many sites simultaneously. This fundamental computational mechanism evolves spatially to engage the neuron populations involved in brain functions. To identify and understand the spatial processing in brains, this workshop will focus on the spatial principles of brain dynamics that determine how action potentials and membrane currents propagate in the networks of neurons that brains are made of. We will focus on non-artificial dynamics, which excludes in vitro dynamics, interference, electrical and optogenetic stimulations of brains in vivo. Recent non-artificial studies of spatial brain dynamics can actually explain how sensory, motor and internal brain functions evolve. The purpose of this workshop is to discuss these recent results and identify common principles of spatial brain dynamics.

SeminarNeuroscience

Workshop: Spatial Brain Dynamics

Carl Petersen, Bruce McNaughton, Sonja Grün
May 11, 2021

Traditionally, the term dynamics means changes in a system evolving over time. However, in the brain action potentials propagate along axons to induce postsynaptic currents with different delays at many sites simultaneously. This fundamental computational mechanism evolves spatially to engage the neuron populations involved in brain functions. To identify and understand the spatial processing in brains, this workshop will focus on the spatial principles of brain dynamics that determine how action potentials and membrane currents propagate in the networks of neurons that brains are made of. We will focus on non-artificial dynamics, which excludes in vitro dynamics, interference, electrical and optogenetic stimulations of brains in vivo. Recent non-artificial studies of spatial brain dynamics can actually explain how sensory, motor and internal brain functions evolve. The purpose of this workshop is to discuss these recent results and identify common principles of spatial brain dynamics.

SeminarNeuroscience

Workshop: Spatial Brain Dynamics

Jennifer Li and Drew Robson, Thomas Mrsic-Flogel, David McCormick
May 10, 2021

Traditionally, the term dynamics means changes in a system evolving over time. However, in the brain action potentials propagate along axons to induce postsynaptic currents with different delays at many sites simultaneously. This fundamental computational mechanism evolves spatially to engage the neuron populations involved in brain functions. To identify and understand the spatial processing in brains, this workshop will focus on the spatial principles of brain dynamics that determine how action potentials and membrane currents propagate in the networks of neurons that brains are made of. We will focus on non-artificial dynamics, which excludes in vitro dynamics, interference, electrical and optogenetic stimulations of brains in vivo. Recent non-artificial studies of spatial brain dynamics can actually explain how sensory, motor and internal brain functions evolve. The purpose of this workshop is to discuss these recent results and identify common principles of spatial brain dynamics.

ePoster

Impact of social isolation on cognitive and motor functions in aging male mice

Rowena Simon, Madlen Haase, Julia Lindner, Fabienne Haas, Christiane Frahm

FENS Forum 2024