← Back

Motor Outputs

Topic spotlight
TopicWorld Wide

motor outputs

Discover seminars, jobs, and research tagged with motor outputs across World Wide.
5 curated items5 Seminars
Updated about 4 years ago
5 items · motor outputs
5 results
SeminarNeuroscience

Reflex Regulation of Innate Immunity

Kevin Tracey
Northwell Health
Nov 7, 2021

Reflex circuits in the nervous system integrate changes in the environment with physiology. Compact clusters of brain neuron cell bodies, termed nuclei, are essential for receiving sensory input and for transmitting motor outputs to the body. These nucelii are critical relay stations which process incoming information and convert these signals to outgoing action potentials which regulate immune system functions. Thus, reflex neural circuits maintain parameters of immunological physiology within a narrow range optimal for health. Advances in neuroscience and immunology using optogenetics, pharmacogenetics, and functional mapping offer a new understanding of the importance of neural circuitry underlying immunity, and offer direct paths to new therapies.

SeminarNeuroscience

“Circuit mechanisms for flexible behaviors”

Takaki Komiyama,
UC San Diego
Apr 7, 2021

Animals constantly modify their behavior through experience. Flexible behavior is key to our ability to adapt to the ever-changing environment. My laboratory is interested in studying the activity of neuronal ensembles in behaving animals, and how it changes with learning. We have recently set up a paradigm where mice learn to associate sensory information (two different odors) to motor outputs (lick vs no-lick) under head-fixation. We combined this with two-photon calcium imaging, which can monitor the activity of a microcircuit of many tens of neurons simultaneously from a small area of the brain. Imaging the motor cortex during the learning of this task revealed neurons with diverse task-related response types. Intriguingly, different response types were spatially intermingled; even immediately adjacent neurons often had very different response types. As the mouse learned the task under the microscope, the activity coupling of neurons with similar response types specifically increased, even though they are intermingled with neurons with dissimilar response types. This suggests that intermingled subnetworks of functionally-related neurons form in a learning-related way, an observation that became possible with our cutting-edge technique combining imaging and behavior. We are working to extend this study. How plastic are neuronal microcircuits during other forms of learning? How plastic are they in other parts of the brain? What are the cellular and molecular mechanisms of the microcircuit plasticity? Are the observed activity and plasticity required for learning? How does the activity of identified individual neurons change over days to weeks? We are asking these questions, combining a variety of techniques including in vivo two-photon imaging, optogenetics, electrophysiology, genetics and behavior.

SeminarNeuroscience

Motor Cortical Control of Vocal Interactions in a Neotropical Singing Mouse

Arkarup Banerjee
NYU Langone medical center
Sep 8, 2020

Using sounds for social interactions is common across many taxa. Humans engaged in conversation, for example, take rapid turns to go back and forth. This ability to act upon sensory information to generate a desired motor output is a fundamental feature of animal behavior. How the brain enables such flexible sensorimotor transformations, for example during vocal interactions, is a central question in neuroscience. Seeking a rodent model to fill this niche, we are investigating neural mechanisms of vocal interaction in Alston’s singing mouse (Scotinomys teguina) – a neotropical rodent native to the cloud forests of Central America. We discovered sub-second temporal coordination of advertisement songs (counter-singing) between males of this species – a behavior that requires the rapid modification of motor outputs in response to auditory cues. We leveraged this natural behavior to probe the neural mechanisms that generate and allow fast and flexible vocal communication. Using causal manipulations, we recently showed that an orofacial motor cortical area (OMC) in this rodent is required for vocal interactions (Okobi*, Banerjee* et. al, 2019). Subsequently, in electrophysiological recordings, I find neurons in OMC that track initiation, termination and relative timing of songs. Interestingly, persistent neural dynamics during song progression stretches or compresses on every trial to match the total song duration (Banerjee et al, in preparation). These results demonstrate robust cortical control of vocal timing in a rodent and upends the current dogma that motor cortical control of vocal output is evolutionarily restricted to the primate lineage.