Motor Sequencing
motor sequencing
Controlling the present while planning the future: How the brain learns and produces fast motor sequences
Motor sequencing is one of the fundamental components of human motor skill. In this talk I will show evidence that the fast and smooth production of motor sequences relies on the ability to plan upcoming movements while simultaneously controlling the ongoing movement. I will argue that this ability relies heavily on planning-related areas in premotor and parietal cortex.
Flexible motor sequencing through thalamic control of cortical dynamics
The mechanisms by which neural circuits generate an extensible library of motor motifs and flexibly string them into arbitrary sequences are unclear. We developed a model in which inhibitory basal ganglia output neurons project to thalamic units that are themselves bidirectionally connected to a recurrent cortical network. During movement sequences, electrophysiological recordings of basal ganglia output neurons show sustained activity patterns that switch at the boundaries between motifs. Thus, we model these inhibitory patterns as silencing some thalamic neurons while leaving others disinhibited and free to interact with cortex during specific motifs. We show that a small number of disinhibited thalamic neurons can control cortical dynamics to generate specific motor output in a noise robust way. If the thalamic units associated with each motif are segregated, many motor outputs can be learned without interference and then combined in arbitrary orders for the flexible production of long and complex motor sequences.