Motor Symptoms
motor symptoms
Targeting thalamic circuits rescues motor and mood deficits in PD mice
Although bradykinesia, tremor, and rigidity are hallmark motor defects in Parkinson’s disease (PD) patients, they also experience motor learning impairments and non-motor symptoms such as depression. The neural basis for these different PD symptoms are not well understood. While current treatments are effective for locomotion deficits in PD, therapeutic strategies targeting motor learning deficits and non-motor symptoms are lacking. We found that distinct parafascicular (PF) thalamic subpopulations project to caudate putamen (CPu), subthalamic nucleus (STN), and nucleus accumbens (NAc). While PF-->CPu and PF-->STN circuits are critical for locomotion and motor learning respectively, inhibition of the PF-->NAc circuit induced a depression-like state. While chemogenetically manipulating CPu-projecting PF neurons led to a long-term restoration of locomotion, optogenetic long-term potentiation at PF-->STN synapses restored motor learning behavior in PD model mice. Furthermore, activation of NAc-projecting PF neurons rescued depression-like PD phenotypes. Importantly, we identified nicotinic acetylcholine receptors capable of modulating PF circuits to rescue different PD phenotypes. Thus, targeting PF thalamic circuits may be an effective strategy for treating motor and non-motor deficits in PD.
Beta oscillations in the basal ganglia: Past, Present and Future; Oscillatory signatures of motor symptoms across movement disorders
On Wednesday, January 25th, at noon ET / 6PM CET, we will host Roxanne Lofredi and Hagai Bergman. Roxanne Lofredi, MD, is a research fellow in the Movement Disorders and Neuromodulation Unit at Charité Universitätsmedizin Berlin. Hagai Bergman, MD, PhD, is a Professor of Physiology in the Edmond and Lily Safra Center for Brain Research and Faculty of Medicine at the Hebrew University of Jerusalem, and is Simone and Bernard Guttman Chair in Brain Research. Beside his scientific presentation on “Beta oscillations in the basal ganglia: Past, Present and Future”, he will also give us a glimpse at the “Person behind the science”. The talks will be followed by a shared discussion. You can register via talks.stimulatingbrains.org to receive the (free) Zoom link!
Neurotoxicity is a major health problem in Africa: focus on Parkinson's / Parkinsonism
Parkinson's disease (PD) is the second most present neurodegenerative disease in the world after Alzheimer's. It is due to the progressive and irreversible loss of dopaminergic neurons of the substantia nigra Pars Compacta. Alpha synuclein deposits and the appearance of Lewi bodies are systematically associated with it. PD is characterized by four cardinal motor symptoms: bradykinesia / akinesia, rigidity, postural instability and tremors at rest. These symptoms appear when 80% of the dopaminergic endings disappear in the striatum. According to Braak's theory, non-motor symptoms appear much earlier and this is particularly the case with anxiety, depression, anhedonia, and sleep disturbances. In 90 to 95% of cases, the causes of the appearance of the disease remain unknown, but polluting toxic molecules are incriminated more and more. In Africa, neurodegenerative diseases of the Parkinson's type are increasingly present and a parallel seems to exist between the increase in cases and the presence of toxic and polluting products such as metals. My Web conference will focus on this aspect, i.e. present experimental arguments which reinforce the hypothesis of the incrimination of these pollutants in the incidence of Parkinson's disease and / or Parkinsonism. Among the lines of research that we have developed in my laboratory in Rabat, Morocco, I have chosen this one knowing that many of our PhD students and IBRO Alumni are working or trying to develop scientific research on neurotoxicity in correlation with pathologies of the brain.
The cellular basis of Parkinson’s disease
Parkinson’s disease is affects millions of people around the world. The disease is characterized by typical movement defects that are caused by the loss of dopaminergic neurons, but several very debilitating non-motor symptoms occur more than 10 years before the motor symptoms. I will discuss how we study these non-motor symptoms including sleep disturbances and olfactory defects using large collections of knock in fruit flies that model the numerous familial forms of Parkinson’s disease as well as using human iPS cells from patients. A common emerging theme are defects in protein homeostasis that in specific neuronal cell types, cause cellular defects that explain the Parkinson-relevant phenotypes. Our work reveals the mechanisms that cause early defects in Parkinson’s disease and it opens therapeutic avenues to start tackling this disease.
An in-depth investigation of motor and non-motor symptoms using diffusion tensor imaging (DTI) measures in Parkinson's disease (PD) patients: A PPMI data analysis
FENS Forum 2024
Oligomeric alpha-synuclein causes early striatal synaptic dysfunction associated with non-motor symptoms
FENS Forum 2024